Tutorial: "Deep Continual Learning"

Gido van de Ven

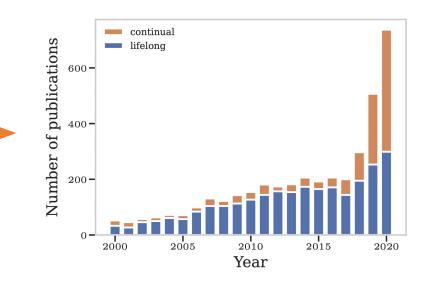
E-mail: <u>gido.vandeven@kuleuven.be</u> Website: <u>https://qmvandeven.github.io</u>

> Dagstuhl Seminar 20 March 2023

Part 1: The Continual Learning *Problem*

The term 'continual learning'

- 'Continual learning' vs. 'lifelong learning'
 - Often used interchangeably
 - Popularity of 'continual learning' more recent
- Especially in recent years, the 'continual learning' literature tends to have a more narrow focus:
 - Traditional ML: all training data available at same time
 - Continual learning: training data arrives incrementally
 there is non-stationarity

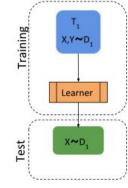


Number of machine learning publications per year, based on keyword occurrence in abstract. *Source: <u>Mundt et al. (2022, ICLR)</u>*

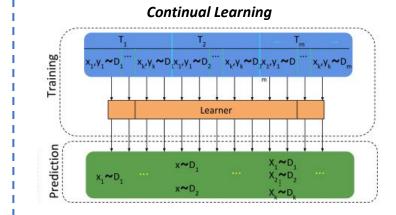
These terms seem roughly to be used as follows:

- **Continual learning** *narrow* how to deal with non-stationarity in training data
- Lifelong learning broad everything relevant for agent learning throughout its lifetime

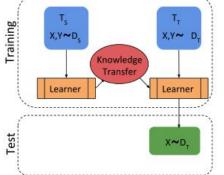
Continual learning in relation to other fields



- One task
- Data available at same time

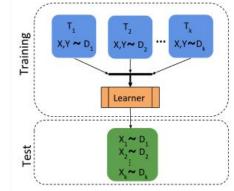


- Multiple tasks
 Data arrive incrementally
- Goal: all tasks



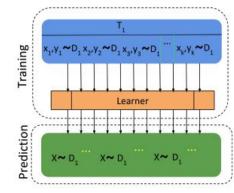
- Multiple tasks
- Data arrive incrementally
- Goal: last task

Multitask Learning



- Multiple tasks
- Data available at same time
- Goal: all tasks

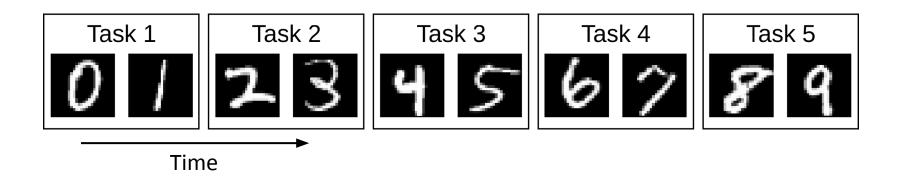
Online Learning



- One task
- Data arrive incrementally

The canonical continual learning example: Split MNIST

- MNIST dataset is split in multiple parts/episodes/tasks^(*) that must be learned sequentially
- After all tasks have been learned, the model should be good at all tasks
- Typically, no or only a small amount of data from past tasks can be stored



Important problem: catastrophic forgetting

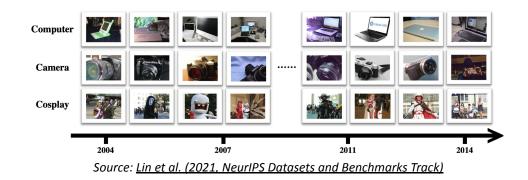
→ When learning a new task, deep neural networks tend to rapidly forget past tasks

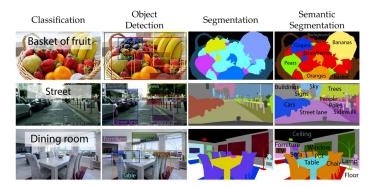
^(*) Often the term "task" is used for this. Although this has some issues, given the widespread use, in this tutorial we mostly use this term.

Going beyond Split MNIST

- Splitting up existing image datasets:
 - CIFAR-10
 - CIFAR-100
 - (Tiny)ImageNet
 - ...
- Datasets specific for continual learning:
 - CORe50
 - Stream-51
 - The CLEAR Benchmark
 - ...
- Beyond classification:
 - Continual reinforcement learning
 - Continual object detection
 - Continual semantic segmentation
 - ...

Source: van de Ven et al. (2020, Nature Communications)





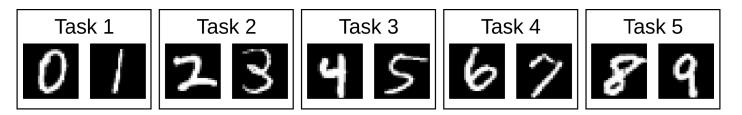
Source: Toldo et al. (2020, Technologies)

CORe50: different types of continual learning

New classes

Back to MNIST: three continual learning scenarios

Split MNIST:



	Type of choice
Task-incremental	Choice between the two digits of the task
Domain-incremental	Is the digit odd or even?
Class-incremental	Choice between all ten digits



Three continual learning scenarios: intuitively

- Task-incremental learning (Task-IL)
 - Incrementally learn a set of clearly distinguishable tasks

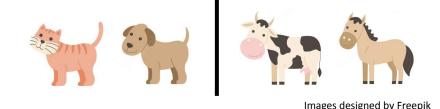
Important challenge: achieve positive transfer between tasks

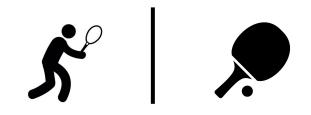
- Domain-incremental learning (Domain-IL)
 - Learn the same type of problem in different contexts

Important challenge: alleviate catastrophic forgetting

- Class-incremental learning (Class-IL)
 - Incrementally learn a growing number of classes

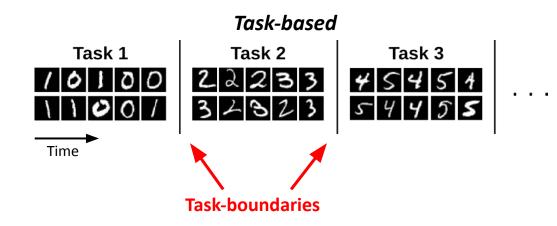
Important challenge: learn to discriminate between objects not observed together

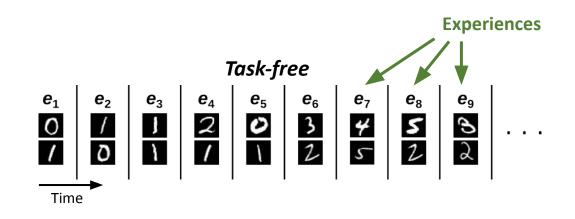




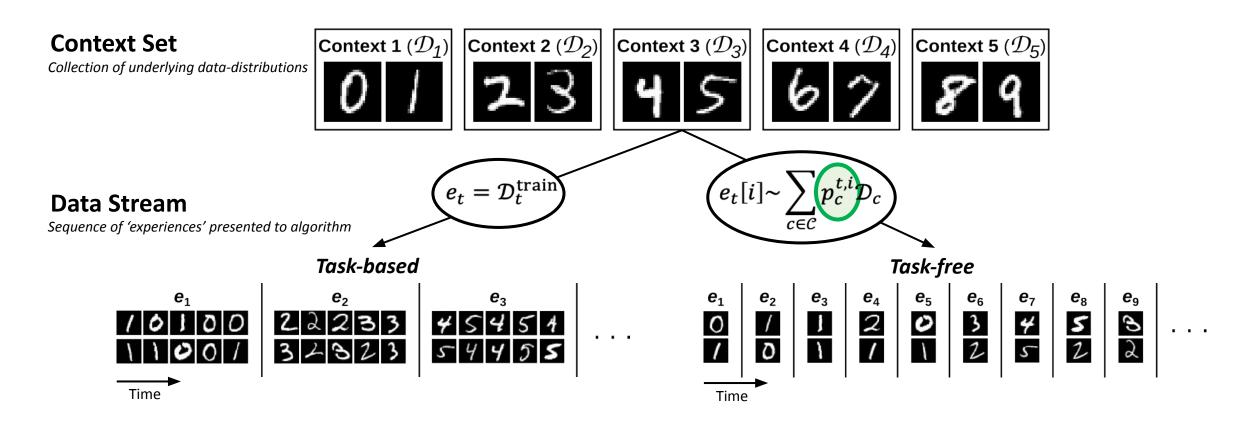
Task-based vs. task-free continual learning

Data Stream

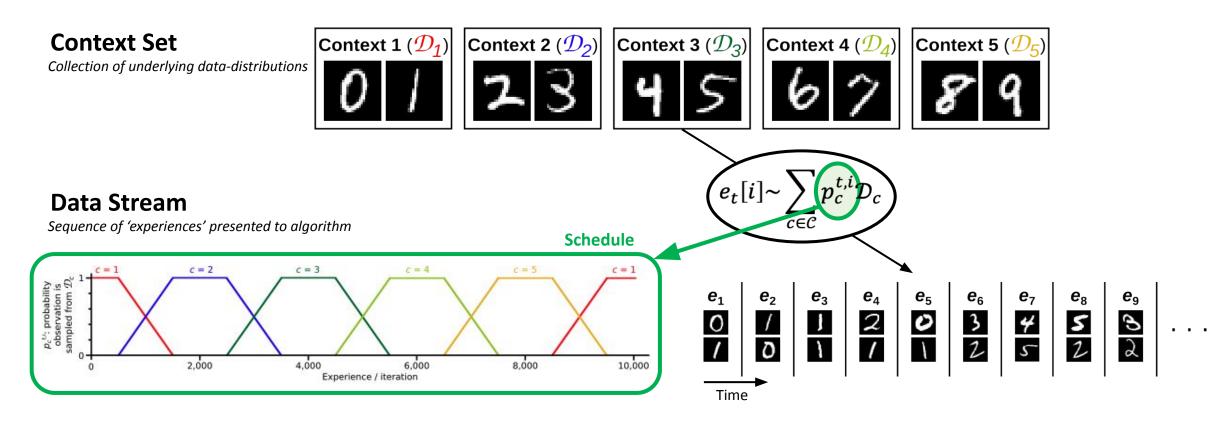




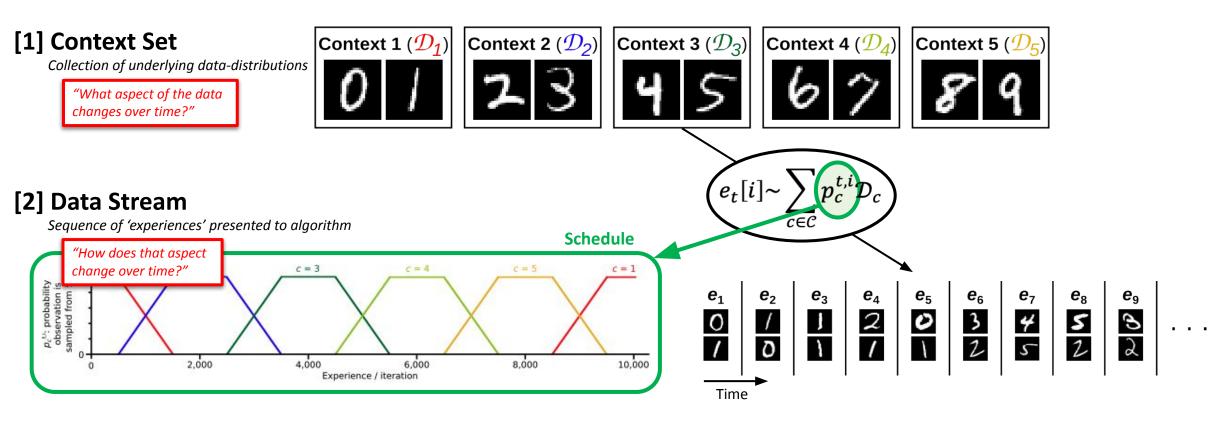
Task-based vs. task-free: formalizing non-stationarity



Task-based vs. task-free: formalizing non-stationarity



General framework



[3] Scenario

What is expected of the algorithm?

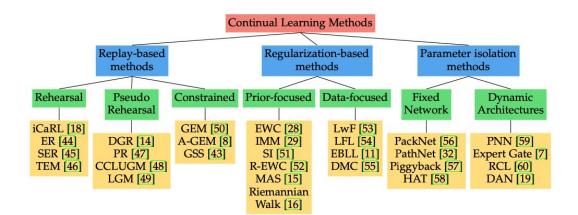
"How does that aspect relate to the mapping to learn?"

	Type of choice	Mapping to learn
(Generalized) Task-IL	Choice between two digits of same context	$f: \mathcal{X} \times \mathcal{C} \to \mathcal{Y}$
(Generalized) Domain-IL	Is the digit odd or even?	$f: \mathcal{X} \rightarrow \mathcal{Y}$
(Generalized) Class-IL	Choice between all ten digits	$f\colon \mathcal{X} \to \mathcal{C} \times \mathcal{Y}$

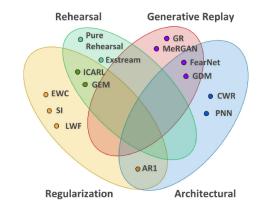
 \mathcal{X} = image pixel space \mathcal{C} = context space = {1,2,3,4,5} \mathcal{Y} = within-context label space = {0,1}

Part 2: Continual Learning *Strategies*

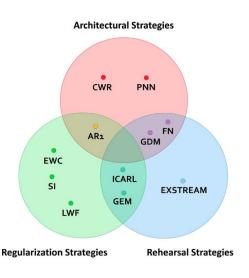
Categorizations of continual learning strategies



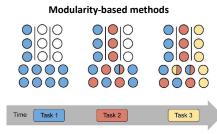
Source: De Lange et al. (2021, TPAMI)

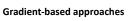


Source: Lesort et al. (2020, Information Fusion)

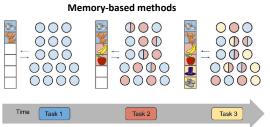


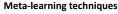
Source: Maltoni & Lomonaco (2019, Neural Networks)

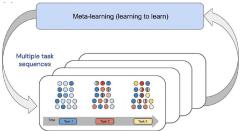




(- importance	
Time Task 1	Task 2	Task 3

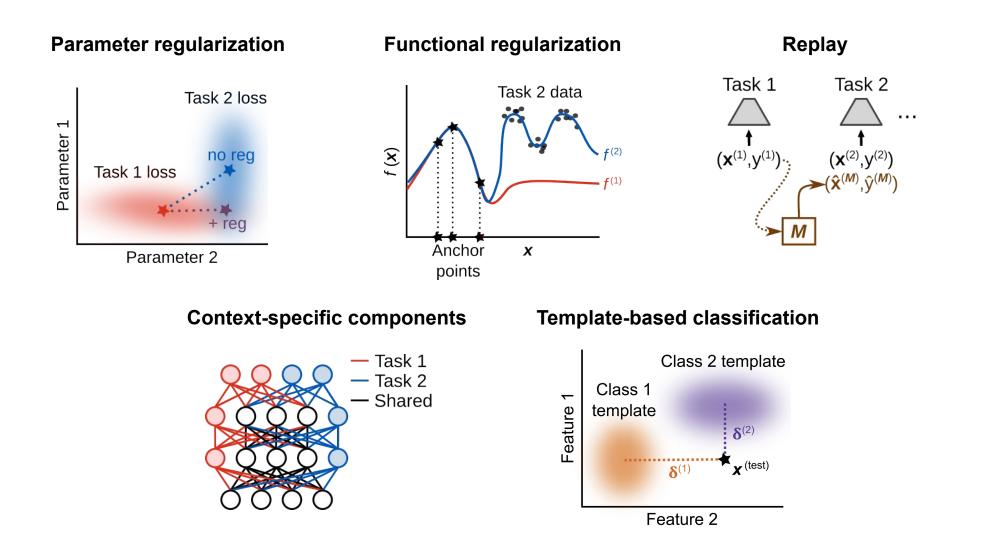






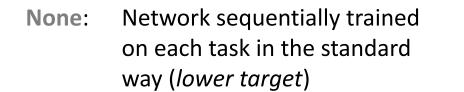
Source: Hadsell et al. (2020, Trends in Cognitive Sciences)

Categorizations of continual learning strategies

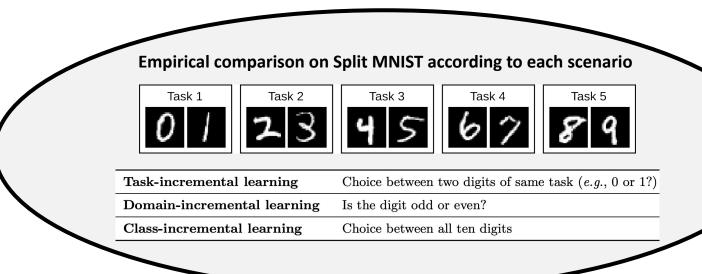


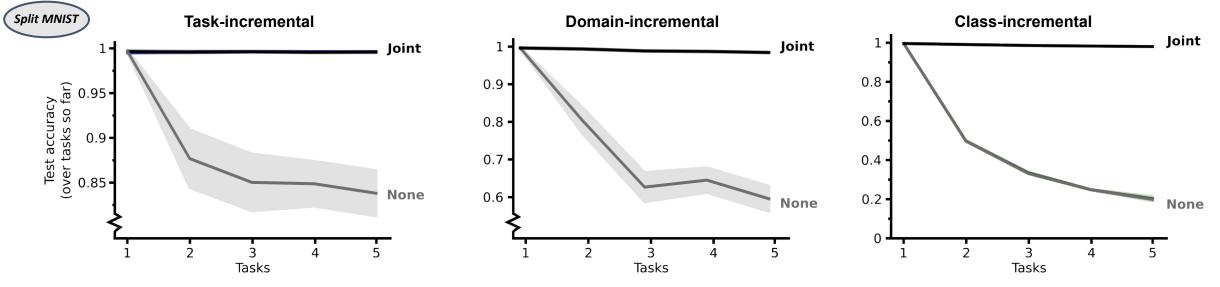
Source: van de Ven et al. (2022, Nature Machine Intelligence)

Baselines: finetuning (*lower target*) & joint training (*upper target*)



Joint: Network trained on all tasks at the same time (*upper target*)

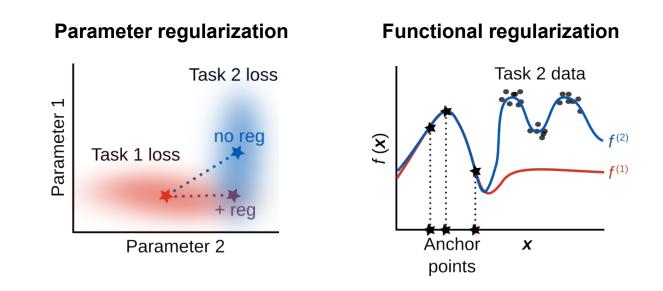




Code for these experiments: <u>https://github.com/GMvandeVen/continual-learning</u>

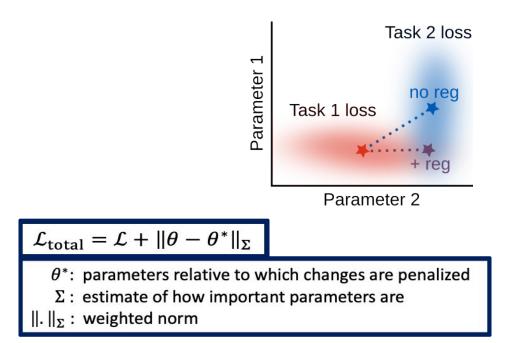
Regularization

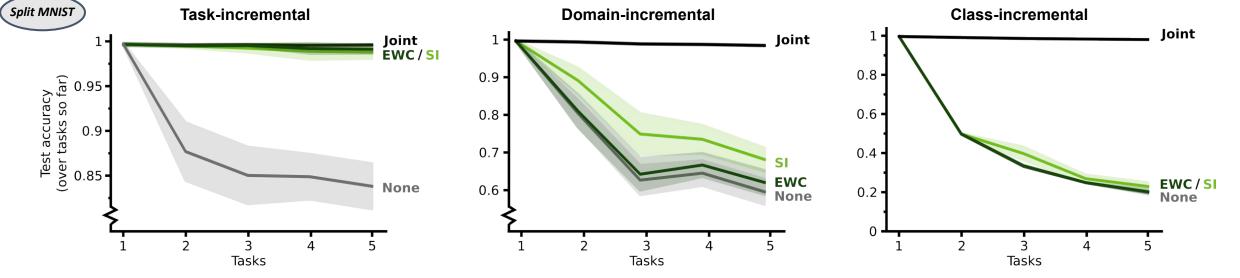
- In continual learning, regularization typically means adding a penalty term to the loss function to **encourage the model to stay close to a previous version of itself**.
- Often, the version relative to which changes are penalized is a copy of the model stored after finishing training on the last task
- Two forms of regularization:



Parameter regularization

- Parameters important for past tasks are encouraged not to change too much when learning a new task
- Can often be interpreted as sequential approximate Bayesian inference on the network's parameters
- Representative methods:
 - Elastic Weight Consolidation [EWC] (Kirkpatrick et al., 2017 PNAS)
 - Synaptic Intelligence [SI] (Zenke et al., 2017 ICML)

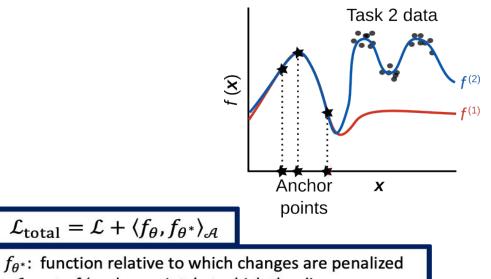




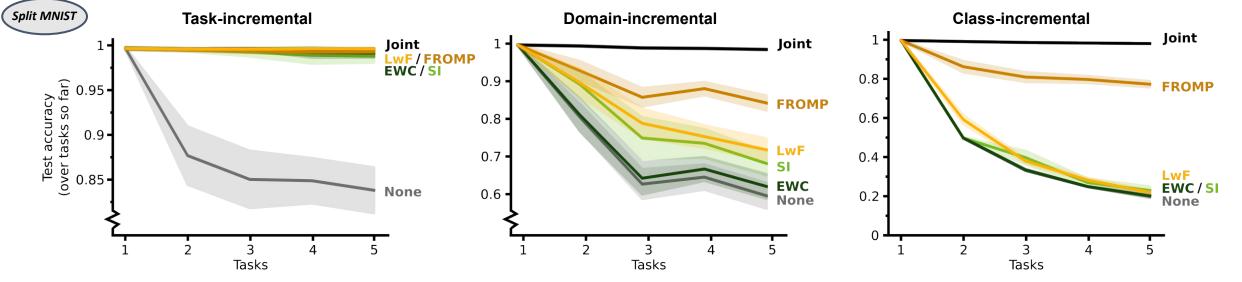
Code for these experiments: https://github.com/GMvandeVen/continual-learning

Functional regularization

- The input-output mapping learned previously is encouraged not to change too much at a particular set of inputs (the 'anchor points')
- Also referred to as knowledge distillation
- Representative methods:
 - Learning without Forgetting [LwF] (Li & Hoiem, 2017 TPAMI)
 - Functional Regularization Of Memorable Past [FROMP] (Pan et al., 2020 NeurIPS)



 $\mathcal{A}: \text{ set of 'anchor points' at which the divergence} \\ \text{ between } f_{\theta} \text{ and } f_{\theta^*} \text{ is measured} \\$

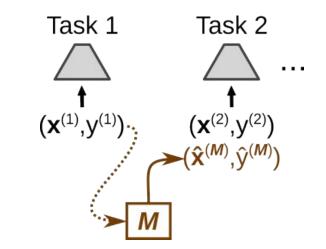


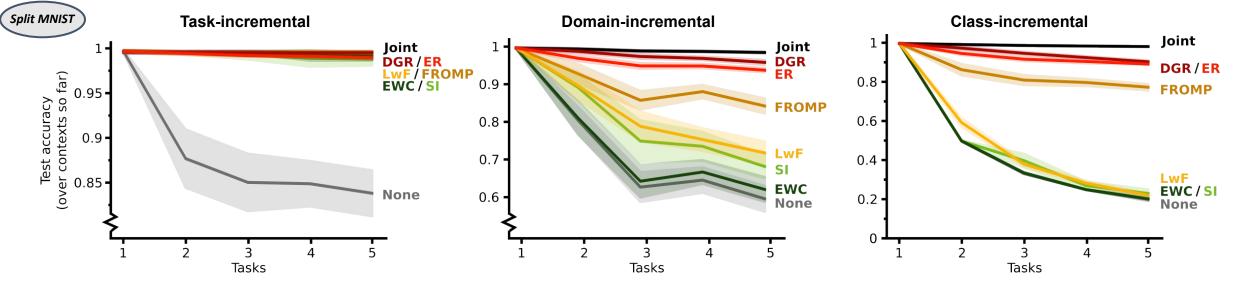
Memory buffer size (FROMP): 100 examples per class

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Replay

- Current training data is complemented with data representative of past observations
- The replayed data can be sampled from a memory buffer or a generative model
- Representative methods:
 - Experience Replay [ER] (Chaudhry et al., 2019 arXiv)
 - Deep Generative Replay [DGR] (Shin et al., 2017 NeurIPS)



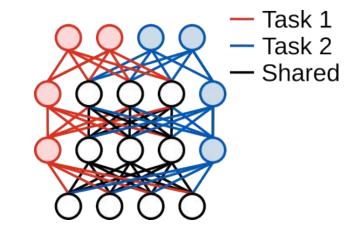


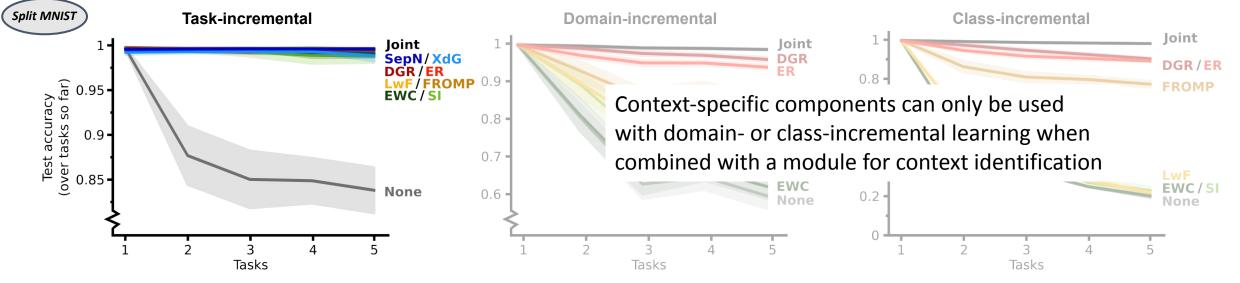
Memory buffer size (FROMP, ER): 100 examples per class

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Context-specific components

- Parts of the network are only used for specific tasks
- Commonly used example: multi-headed output layer
- Requires knowledge of task identity at test time
- Representative methods:
 - Context-dependent Gating [XdG] (Masse et al., 2018 PNAS)
 - Separate Networks [SepN]



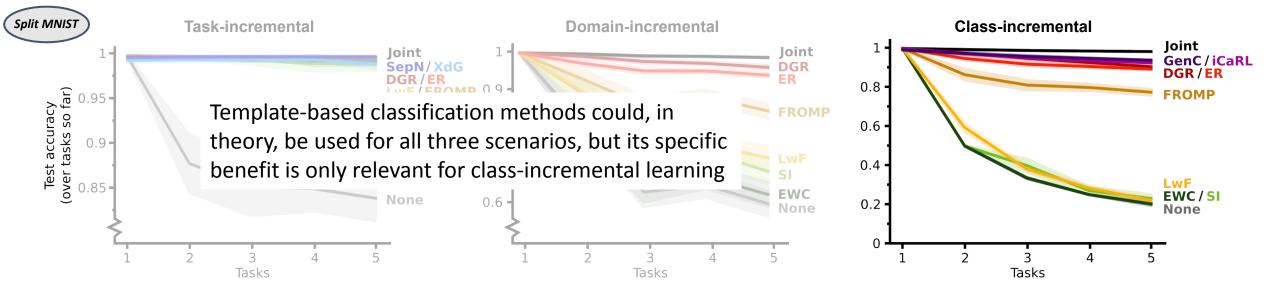


Memory buffer size (FROMP, ER): 100 examples per class

Code for these experiments: <u>https://github.com/GMvandeVen/continual-learning</u>

Template-based classification

- A 'template' is learned for each class, and classification is performed based on which template is most suitable for sample to be classified
- Examples of templates are prototypes or generative models
- Allows comparing classes 'at test time', rather than during training
- Representative methods:
 - Incremental Classifier and Representation Learning [iCaRL] (Rebuffi et al., 2017 CVPR)
 - Generative Classifier [GenC] (van de Ven et al., 2021 CVPR-W)



Memory buffer size (FROMP, ER, iCaRL): 100 examples per class

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Class 2 template Class 1 template $\delta^{(2)}$ $\delta^{(1)}$ Feature 2

Strategy	Method	Budget	GM	Task-IL	Domain-IL	Class-IL
Baselines	None – lower target Joint – upper target			61.43 (± 0.36) 78.78 (± 0.25)	18.42 (± 0.33) 46.85 (± 0.51)	7.71 (\pm 0.18) 49.78 (\pm 0.21)
Context-specific components	Separate Networks XdG	-	-	76.83 (\pm 0.25) 69.86 (\pm 0.34)		-
Parameter regularization	EWC SI	-	-	76.34 (\pm 0.29) 74.84 (\pm 0.39)	21.65 (\pm 0.55) 22.58 (\pm 0.42)	$8.24 (\pm 0.25)$ $8.10 (\pm 0.24)$
Functional regularization	LwF FROMP	- 100	-	78.59 (± 0.24) not run	29.45 (± 0.39) not run	25.57 (± 0.27) not run
Replay	DGR ER	- 100	yes -	71.40 (\pm 0.32) 76.43 (\pm 0.24)	$20.52 (\pm 0.43) \\ 39.00 (\pm 0.34)$	9.67 (\pm 0.22) 37.57 (\pm 0.21)
Template-based classification	Generative Classifier iCaRL	- 100	yes -	-		$\begin{array}{c} 46.83 \ (\pm \ 0.18) \\ 37.83 \ (\pm \ 0.21) \end{array}$

Strategy	Method	Budget	GM	Task-IL	Domain-IL	Class-IL
Baselines	None – lower target Joint – upper target			61.43 (± 0.36) 78.78 (± 0.25)	$\frac{18.42}{46.85} (\pm 0.33)$	7.71 (\pm 0.18) 49.78 (\pm 0.21)
Context-specific components	Separate Networks XdG		-	76.83 (\pm 0.25) 69.86 (\pm 0.34)	-	-
Parameter regularization	EWC SI	_ <	-	76.34 (\pm 0.29) 74.84 (\pm 0.39)	21.65 (\pm 0.55) 22.58 (\pm 0.42)	$8.24 (\pm 0.25)$ $8.10 (\pm 0.24)$
Functional regularization	LwF FROMP	100	-	78.59 (± 0.24) not run	29.45 (± 0.39) not run	25.57 (± 0.27) not run
Replay	DGR ER	- 100	yes -	71.40 (\pm 0.32) 76.43 (\pm 0.24)	$\begin{array}{c} 20.52 \ (\pm \ 0.43) \\ 39.00 \ (\pm \ 0.34) \end{array}$	9.67 (± 0.22) 37.57 (± 0.21)
Template-based classification	Generative Classifier iCaRL	- 100	yes -	-	-	$\begin{array}{c} 46.83 \ (\pm \ 0.18) \\ 37.83 \ (\pm \ 0.21) \end{array}$

Strategy	Method	Budget	GM	Task-IL	Domain-IL	Class-IL
Baselines	None – lower target Joint – upper target			61.43 (± 0.36) 78.78 (± 0.25)	$\frac{18.42}{46.85} (\pm 0.33)$	7.71 (\pm 0.18) 49.78 (\pm 0.21)
Context-specific components	Separate Networks XdG	-	-	76.83 (\pm 0.25) 69.86 (\pm 0.34)	-	-
Parameter regularization	EWC SI	-	-	76.34 (\pm 0.29) 74.84 (\pm 0.39)	21.65 (\pm 0.55) 22.58 (\pm 0.42)	8.24 (\pm 0.25) 8.10 (\pm 0.24)
Functional regularization	LwF FROMP	- 100	-	78.59 (± 0.24) not run	29.45 (± 0.39) not run	25.57 (± 0.27) not run
Replay	DGR ER	100	yes	71.40 (\pm 0.32) 76.43 (\pm 0.24)	$20.52 (\pm 0.43) \\ 39.00 (\pm 0.34)$	9.67 (\pm 0.22) 37.57 (\pm 0.21)
Template-based classification	Generative Classifier iCaRL	- 100	yes -	-	-	46.83 (\pm 0.18) 37.83 (\pm 0.21)

Strategy	Method	Budget	GM	Task-IL	Domain-IL	Class-IL
Baselines	None – lower target Joint – upper target			61.43 (± 0.36) 78.78 (± 0.25)	$\frac{18.42}{46.85} (\pm 0.33)$	7.71 (± 0.18) 49.78 (± 0.21)
Context-specific components	Separate Networks XdG	-	-	76.83 (\pm 0.25) 69.86 (\pm 0.34)	-	-
Parameter regularization	EWC SI	-	-	76.34 (\pm 0.29) 74.84 (\pm 0.39)	21.65 (\pm 0.55) 22.58 (\pm 0.42)	$8.24 (\pm 0.25)$ $8.10 (\pm 0.24)$
Functional regularization	LwF FROMP	- 100	-	78.59 (± 0.24) not run	29.45 (± 0.39) not run	25.57 (± 0.27) not run
Replay	DGR ER	- 100	yes -	71.40 (\pm 0.32) 76.43 (\pm 0.24)	$\begin{array}{c} 20.52 \ (\pm \ 0.43) \\ 39.00 \ (\pm \ 0.34) \end{array}$	9.67 (± 0.22) 37.57 (± 0.21)
Template-based classification	Generative Classifier iCaRL	- 100	yes -	-	н (н	$\begin{array}{c} 46.83 \ (\pm \ 0.18) \\ 37.83 \ (\pm \ 0.21) \end{array}$

Summary

- Continual learning is not a unitary problem: we discussed **three** scenarios that differ substantially in terms of difficulty and in terms of the effectiveness of different computational strategies
- **Regularization-based methods** often have relatively low memory and computational costs, but they struggle in certain settings
- **Replay** can work well in all three scenarios, but has relatively high memory and computational costs
- Class-incremental learning seems to require either replay (to allow comparing classes during training) or template-based classification (to allow comparing classes during inference)