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Illustrative Problem

To which class does this example belong?

- Class 1!



Overview of this lecture

* Introduction to continual learning

e Let’s be clear about the problem: three continual learning scenarios
 Strategy 1: Generative replay

 Strategy 2: Generative classifiers

* Which strategy do we use?



What is continual learning?

* In classical machine learning, an algorithm has access to all training
data at the same time

* With continual learning, two key differences are:
- the training data arrives incrementally
- the distribution from which the training data is sampled changes over time



Continual learning in relation to other fields
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Source: De Lange et al. (2022, TPAMI)
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The canonical continual learning example: Split MNIST

 MNIST dataset is split in multiple parts/episodes/tasks that must be learned sequentially
» After all tasks have been learned, the model should be good at all tasks

* Typically, no or only a small amount of data from past tasks can be stored

Task 1 Task 2 Task 3 Task 4 Task 5

219

Time

Important problem: catastrophic forgetting

» When learning a new task, deep neural networks tend to rapidly forget past tasks



Let’s be clear about the continual learning problem ...

Split MNIST:

Task 1 Task 2

0]/

Task 3 Task 4

4lsiely

Type of choice

Task-incremental

Choice between the two digits of the task

Domain-incremental

Is the digit odd or even?

Class-incremental

Choice between all ten digits

At test time, is
task label given?

/\

YES NO
Task- Must task label
incremental be inferred?
learning /\
NO YES
Domain- Class-
incremental incremental

learning learning

Van de Ven & Tolias (2018) NeurlPS Workshop; van de Ven et al (2022) Nature Machine Intelligence



Three continual learning scenarios

* Task-incremental learning (Task-IL) > ‘
* Incrementally learn a set of clearly distinguishable tasks )

Important challenge: achieve positive transfer between tasks

* Domain-incremental learning (Domain-IL)
* Learn the same type of problem in different contexts

Important challenge: alleviate catastrophic forgetting 'O——.O e O

* Class-incremental learning (Class-IL)
* Incrementally learn a growing number of classes IS

wuenge: learn to discriminate between objects not observed together -

Images designed by Freepik




Strategy 1: Generative replay

Deep Learning: Neuroscience:

* Interleaved learning am Replay is hypothesized to
prevents catastrophic have an important role in
forgetting memory consolidation
[McCloskey & Cohen, 1989 Psych Learn Motiv; [Wilson & McNaughton, 1994 Science; O’Neill et al., 2010 TINS;
Ratcliff, 1990 Psych Rev] van de Ven et al., 2016 Neuron]

Motivation:

» Use replay to enable deep neural networks to do ‘continual learning’
» Use artificial neural networks as a computational model for replay in the brain

van de Ven et al (2020) Nature Communications



How to add replay to artificial neural networks?

» Store data and interleave — “exact” or “experience replay”

* Initial argument for role of replay in memory consolidation
in the brain [McClelland et al., 1995 Psych Rev]

* Unclear how the brain could do directly store data

* Not always possible (e.g., privacy concerns, limited storage)
* Problematic when scaling up to true lifelong learning

* Use a generative model — “generative replay”

* More realistic from neuroscience point of view

* Views hippocampus as a generative neural network and replay as
a generative Process, see also [Liu et al., 2018 Neuron; Liu et al., 2019 Cell]

* Learning a generative model as a more scalable, privacy-
preserving way of remembering previous seen data
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How to implement generative replay?

Main model (eg, classifier; M\ ):

Generator (eg, VAE or GAN; G\):

Incremental training protocol:

Task / Episode 1

Task / Episode 2
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* .

/M\ /6\
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Task / Episode 3

*

Generation of a sample to be replayed:

AL sample z

o ;
yr

/M\ /6\
ko

k x(t) (":

Shin et al. (2017) NeurlPS



Does generative replay work?

Test accuracy
o
(o]
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Task-Incremental Learning (Task-IL)

Choice always just between 2 digits (e.g., '0' or '1'?)

Generative
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But...
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Joint Training (“upper target”)
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(1) MNIST digits are relatively easy to generate

(2) constantly retraining on all previous tasks seems very inefficient

PyTorch code for these experiments: https://github.com/GMvandeVen/continual-learning



https://github.com/GMvandeVen/class-incremental-learning

Efficiency: How much replay is needed?

* Previous tasks' datasets do not need to be /z: 1 " 1 @ )
replayed "fUIly" total == Ntasks so far Ntasks so far

* How far could the number of replayed

-'Nrcurren -batch = 128 ]\Tre ay-batch = ?
sampled per batch be reduced? \_ e e )
Task-incremental learning Class-incremental learning
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= Fully replaying previous tasks is not needed, replaying only a few examples could suffice

(these experiments are on Split MNIST)
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Robustness: How good does the replay need to be?

* Generating MNIST-digits is relatively easy; could this scale to more complicated inputs?

* Performance of generative replay is evaluated as function of the size of the generator
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= A perfect memory is not needed, a low-quality generative model could suffice

(these experiments are on Split MNIST)
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Robustness and efficiency of replay

(INTERIM SUMMARY: )

* Even replaying a few or poor-quality samples can substantially boost continual
learning performance

* “Not forgetting” is easier for a network than “learning”

K Further details: - van de Ven et al. (2020) Brain-inspired replay for continual learning with artificial neural networks. Nature Communications 11.: 4069)

Next step:
— Scale up generative replay to problems with more complex inputs



What about natural images?

Class-incremental
CIFAR-100:
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Standard versions of generative replay break down on problems with more complex

inputs (e.g., natural images)

[see also Lesort et al., 2019 IJCNN; Aljundi et al., 2019 NeurlPS]



Brain-inspired modifications to Generative Replay
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Brain-inspired replay on natural images

Class-incremental
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(all methods use pre-trained convolutional layers) PyTorch code for these experiments: https://github.com/GMvandeVen/brain-inspired-replay



https://github.com/GMvandeVen/brain-inspired-replay

Scaling generative replay to more complex problems

ﬁ\lTERlM SUMMARY: \

e Scaling up generative replay to problems with more complex inputs is not
straight-forward

* Brain-inspired modifications help to scale up generative replay

* In particular, replaying abstract, high-level representations increases

performance while lowering computational costs (see also: Liu et al., 2020 CVPR-W;
Pellegrini et al., 2020 /ROS)

\ Further details: - van de Ven et al. (2020) Brain-inspired replay for continual learning with artificial neural networks. Nature Communications 11.: 40y

But despite improvements, a substantial performance gap remains relative to
the upper target of jointly training on all classes ...



Strategy 2: Generative Classification

Discriminative classifiers Generative classifiers
* Directly learn p(y|x), or argmax p(y|x). * Learn p(x,y), factorized as p(x|y)p(y), and
y classify using Bayes’ rule
category\ '
e Learn rules / shortcuts / features to distinguish * Learn a model / template / representation for
between the classes to be learned each class to be learned
 Comparison between classes is during training * Comparison between classes is during inference

Generative classification rephrases a class-incremental problem as a task-incremental
problem, whereby each ‘task’ is to learn a class-conditional generative model.

van de Ven et al (2021) CVPR-W proceedings



Naive implementation for proof-of-principle

- Separate VAE model for each class

(this is the naive solution for a task-incremental learning % % %
problem, upon which successful task-incremental learning
methods should be able to improve)

Schematic Class 1 Class 2 Class 3

I | | | | |
IT¢|IT¢IIT¢I“-
. . . v 17 14
- If a pretrained network is available, | :
the VAE models are trained on the | : |
latent features | Tnput |
- . . Making a classification decision
- Class-conditional likelihoods are

(1) Estimate class-conditional likelihoods

estimated using importance sampling PXrestly = 1) PCerestly = 2) pteesely =3) - .-

(2) Classify using Bayes’ rule

- The total number of parameters is
similar to that of brain-inspired replay

yest) = argmax p(Xeesely = 1)
l




Naive implementation for proof-of-principle
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(all methods use pre-trained convolutional layers) PyTorch code for these experiments: https://github.com/GMvandeVen/class-incremental-learning



https://github.com/GMvandeVen/class-incremental-learning

Generative classification

ﬁ\lTERlM SUMMARY: \

* Generative classification is a promising, “rehearsal-free” strategy for class-
incremental learning

* Generative classification rephrases a class-incremental learning problem as a
task-incremental learning problem

* How to use a generative model? At least in some settings, using it directly for
generative classification outperforms using it indirectly for generative replay

\ Further details: - van de Ven et al. (2021) Class-incremental learning with generative classifiers. CVPR-W proceedings: 3611—3620/

Limitations / future work:
- How to share parts of the different generative models remains an open question
- Inference is slow, as likelihood must be computed/estimated for each possible class



Which strategy do we use?

Learning episode 1 Learning episode 2 Inference
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Which strategy do we use?

Generative Replay: Learning episode 1 Learning episode 2 Inference
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Overall summary

Brain-inspired replay Generative classifier

Class 1 Class 2 Class 3

o

e Continual learning is not a unitary problem: there are three
different scenarios, each with their own challenges
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All code is available: https://github.com/GMvandeVen



https://github.com/GMvandeVen
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