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Introduction
 
 
 

Three types of incremental learning Workarounds for discriminative classifiers

Discriminative vs. generative classification

Proof-of-principle implementation

Incrementally learning from non-stationary data, referred to as ‘continual learning’, is a key feature of natural intelligence, but an unsolved problem in 
deep learning. Particularly challenging for deep neural networks is the problem of ‘class-incremental learning’, whereby a network must learn to 
distinguish between classes that are not observed together. 
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Results on CIFAR-100

Highlights

Generative Replay (GR):
Both a generative model and a 
classifier are learned [4]. When 
training on new classes, samples 
from the generative model 
representing previously learned 
classes are interleaved with the 
training data of the new classes.
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-  Generative classification is a very promising strategy for incrementally learning new classes.
-  This study provides a fresh perspective to the ongoing debate in computational cognitive science whether, or when, the brain performs inference
    using discriminative or generative computations [6].
-  More details:  van de Ven GM, Li Z, Tolias AS (2021) Class-incremental learning with generative classifiers. CVPR workshop proceedings: 3611-3620.

Elastic Weight Consolidation (EWC) / Synaptic Intelligence (SI): 
These parameter regularization methods slow down learning for 
parameters important for past task [2,3]. These methods can be 
interpreted as performing sequential approximate Bayesian inference 
on the parameters of a neural network.
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Continual learning is not a unitary problem. In previous work, we identified 
these three distinct types, or "scenarios", of incremental learning, based 
on how the mapping that must be learned relates to the aspect of the data 
that changes over time [1].
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Direct comparison:
How to use a generative model?

-  Likelihoods are estimated using importance
    sampling

Generative classification rephrases an often challenging class-incremental 
problem as a typically easier addressable task-incremental problem, 
whereby each 'task' is to learn a class-conditional generative model.

- Directly learn p(y|x) - Learn p(x,y), factorized p(x|y)p(y),
   and classify using Bayes' rule

Discriminative classifiers Generative classifiers

- Learn a model / template /
   representation for each class

- Compare classes during inference

- Learn rules / shortcuts / features
   to distinguish between classes

- Compare classes during training

Brain-Inspired Replay (BI-R):
A brain-inspired variant of generative 
replay in which abstract, high-level 
representations are replayed that are 
generated by the network's own feedback 
connections [5].

These results indicate that directly using a generative model for 
generative classification leads to better class-incremental learning 
performance than using those models indirectly to generate replay 
for discriminatively training a classifier.

Shown is test accuracy (in %) over all classes. All experiments were performed 10 times with different random seeds, reported are the mean (+/- SEMs) over these runs.

Here we test this more directly, by training a discriminative 
classifier on the samples of the generative models used by the 
generative classifier.

-  Separate VAE model for each class

-  The total number of parameters is similar
    to that of generative replay

-  If a pretrained network is available, the VAE
    models are trained on the latent features


