
Brain-inspired replay in artificial neural networks 

 

RESULTS: Firstly, we find that although most of the recent methods for continual learning with artificial 
neural networks (ANNs) are very successful for scenarios in which tasks must be learned incrementally, 
only replay-based methods are able to incrementally learn new classes (Fig. 1). To further strengthen the 
case for replay as a valuable tool for continual learning with ANNs, we demonstrate that generative replay 
– which does not rely on storing data, as it trains a generator to generate the data to be replayed – is 
surprisingly robust and efficient (Fig. 2). Despite these promising results on split MNIST, we nevertheless 

find that scaling up generative replay to more challenging problems with many tasks ( 100) or complex 
inputs (natural images) is not straight-forward (Fig. 4, red curves). One possible solution could be to use 
the recent progress in deep generative models to improve the quality of the generator, but this approach 
will be inefficient as high-quality generative models can be computationally very costly to train or sample 
from. Instead, we demonstrate that with several efficient, brain-inspired modifications (Fig. 3), we obtain 
state-of-the-art performance with generative replay on challenging benchmarks (Fig. 4, purple curves). 

Current state-of-the-art deep neural networks can solve almost any task they are trained on. But 
when such a network is trained on a new task, the previously learned task is quickly forgotten. 
Importantly, this ‘catastrophic forgetting' is not due to limited capacity of the network, as the same 
network could learn both tasks when trained in an interleaved fashion. In the real world, however, 
training examples are not presented interleaved but typically appear in sequences. A straight-
forward solution would be to store the encountered examples from previously learned tasks and 
revisit them when learning new tasks. Although such ‘replay’ or ‘rehearsal’ solves catastrophic 
forgetting, in the deep learning community replay is typically believed not to be a scalable solution 
as constantly retraining on all previous problems is very inefficient and the amount of data that 
would have to be stored becomes unmanageable very quickly. 

Yet, in the brain – which clearly has implemented an efficient and scalable algorithm for 
continual learning – the replay of previous experiences is important for stabilizing new memories. 
Inspired by this, here we revisit the use of replay as a tool for continual learning with artificial neural 
networks. We find that: (1) fully replaying previously learned problems is not needed, as a handful 
of replayed examples could be enough; (2) a perfect memory (i.e., storing all encountered 
examples) is not required, as a low capacity generative model could suffice; and (3) brain-inspired 

modifications enable generative replay to scale to complicated problems with many tasks ( 100) or 
complex inputs (natural images), resulting in state-of-the-art performance on challenging continual 
learning benchmarks. Moreover, when incrementally learning new classes (as opposed to new 
tasks), we find that replay might actually be necessary. This last result suggests a specific, so far 
unappreciated, computational goal for replay in the brain. 
 

Fig. 1: (A) Split MNIST performed according to two different scenarios. (B) With task-incremental 
learning, all compared continual learning methods perform very well. (C) But with class-incremental 
learning, only methods using some form of replay are able to prevent catastrophic forgetting. 



 

DISCUSSION: Besides providing a demonstration of how insights from neuroscience can make the 
performance of ANNs more human-like, our work generates new perspectives and hypotheses about the 
computational role and possible implementations of replay in the brain. In particular, our findings point 
towards a specific role for replay in incremental category learning and they highlight that replaying 
internal representations could be efficiently implemented by feedback connections using inhibitory gating. 

Fig. 3: Schematics of our brain-inspired modifications to the standard generative replay framework 
(Shin et al, 2017; NIPS). (A) Replay-through-Feedback. The generator [G] is merged into the main 
model [M] by equipping it with generative feedback or backward connections, resulting in a VAE 
with added softmax layer. (B) Conditional Replay. To enable the model to generate specific 
categories, the standard normal prior is replaced by a Gaussian mixture with a separate mode for 
each category. (C) Context gates. For every task or episode, a different subset of neurons in each 
layer is inhibited during the generative backward pass. (D) Internal replay. Instead of 
representations at the input level (e.g., pixel level), hidden or internal representations are replayed. 

Fig. 2: Performance of generative replay on the class-incremental version of Split MNIST as a function 
of (A) the number of replayed samples per batch and (B) the number of units in the hidden layers of 
the variational autoencoder (VAE) used for generating replay. Also shown are random samples from 
the VAE with 10 hidden units after training on the 4th task (i.e., what is replayed during the final task). 

Fig. 4: Scaling up generative replay to more challenging problems is not straight-forward, but it can be 
achieved with our brain-inspired modifications. All of the compared methods use similar-sized 
networks. (A) Permuted MNIST with 100 different permutations. (B) Class-incremental learning on 
CIFAR-100, which is an unsolved benchmark in the continual learning literature; until now, only 
methods that explicitly store data (e.g., iCaRL) had been able to achieve acceptable performance on it. 
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