Three Continual Learning Scenarios
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Introduction

When trained on a new task, deep neural networks tend to forget most information related to previously learned tasks, a phenomenon referred to as '‘catastrophic
forgetting''. In recent years, numerous methods for alleviating catastrophic forgetting have been proposed. However, due to the wide variety of experimental protocols used
to evaluate them, many of these methods claim "state-of-the-art" performance [1,2,3,4,5,6]. To obscure things further, some methods shown to perform well in some
experimental settings are reported to dramatically fail in others: compare the performance of elastic weight consolidation in [1] and [7] with that in [8] and [9].

TL;DR: To enable fair and structured comparisons of methods for continual learning, we identify three distinct continual learning scenarios of increasing difficulty.

Continual learning scenarios

[1] Incremental task learning:

This Is the easiest continual learning scenario, as models are always informed about which task needs to be performed. Since task identity is always provided, it is possible to
train models with task-specific components. A typical neural network architecture used in this scenario has a "multihead" output-layer, meaning that each task has its own
output units but the rest of the network is (potentially) shared between tasks.

[2] Incremental domain learning:
In this scenario, task identity is not available at test time. Models however only need to solve the task at hand; they are not required to infer which task it is. Typical examples
of this scenario are protocols whereby the structure of the tasks is always the same, but the input-distribution is changing.

[3] Incremental class learning:
This is the most difficult scenario, as models need to be able both to solve each task seen so far and to infer which task they are presented with. This scenario includes
protocols in which new classes need to be learned incrementally

Compared Methods

- XdG: For each task, a random subset of X% of the units in each hidden layer are fully gated (i.e., their activations set to zero), with X a hyperparameter set by grid search [4].

- EWC / Online EWC / SI: A reglarization term is added to the loss that penalizes changes to parameters as a function of how important they are estimated to be for previously learned tasks [1,10,7].

- LwWF: Images of the current task are replayed with soft targets provided by a copy of the model stored after finishing training on the previous task [11].

- DGR: A separate generative model is trained to generate images to be replayed, which are paired with hard targets provided by a copy of the main model stored after training on the previous task [12].
- DGR+distill: A separate generative model is trained to generate the images to be replayed, but these are paired with soft targets (as in LwF) instead of hard targets (as in DGR).
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Incremental task learning With task given, is it the first or second class? (e.g., ‘0’ or ‘1’)

Incremental task learning Given permutation X was applied, which digit is it?

With task unknown, is it a first or second class?
(e.g., in [‘09,‘29’64."66.‘968.‘] Or in [61.‘,63.‘,.’5',5‘79969v])

With task unknown, which digit is it? (choice from ‘0’ to ‘9’)

Incremental domain learning Incremental domain learning With permutation unknown, which digit is it?

Incremental class learning Which digit is it and which permutation was applied?

Incremental class learning

All methods used a multi-layer perceptron with 2 hidden layers of 400 nodes each followed by
a softmax output layer, 2000 iterations per task and ADAM-optimizer with learning rate 0.001.
Reported is the average task accuracy over all tasks:

All methods used a multi-layer perceptron with 2 hidden layers of 1000 nodes each followed by
a softmax output layer, 5000 iterations per task and ADAM-optimizer with learning rate 0.0001.
Reported is the average task accuracy over all tasks:

| Incremental Incremental Incremental | Incremental Incremental Incremental
Method ‘ : : : - : Method , : : : - :
task learning domain learning class learning task learning domain learning class learning
None - lower bound 85.15 (%= 1.00) 57.33 (= 1.66) 19.90 (£ 0.02) None - lower bound 81.79 (£ 0.48) 71851 (£ 0.24) 17.26 (= 0.19)
XdG 08.74 (£ 0.31) - - XdG 91.40 (£ 0.23) - -
EWC 85.48 (£ 1.20) 57.80 (£ 1.61) 19.90 (£ 0.02) EWC 94.79 (£ 0.03) 9443 (£ 0.10) 27.65 (£ 0.52)
Online EWC 835.22 (£ 1.06) 57.60 (= 1.66) 19.90 (£ 0.02) Online EWC 96.09 (£ 0.08) 94.25 (£ 0.15) 34.41 (£ 0.66)
SI 90.14 (£ 0.11) 63.77 (£ 1.18) 20.04 (£ 0.08) SI 94.75 (£ 0.14) 95.33 (£ 0.11) 29.31 (£ 0.62)
LwF 99.60 (£ 0.03) 71.02 (£ 1.26) 24.17 (= 0.51) LwF 69.84 (+ 0.46) 712.64 (£ 0.52) 22.64 (£ 0.23)
DGR 990.47 (£ 0.03) 95.74 (£ 0.23) 91.24 (£ 0.33) DGR 02.52 (£ 0.08) 95.09 (£ 0.04) 92.19 (£ 0.09)
DGR-+distill 990.59 (£ 0.03) 96.94 (+ 0.14) 91.84 (= 0.27) DGR-+distill 97.51 (£ 0.01) 97.35 (£ 0.02) 96.38 (£ 0.03)
Offiine — upper bound 99.64 (£ 0.03) 08.41 (£ 0.06) 97.93 (£ 0.04) Offiine — upper bound 97.68 (£ 0.01) 97.59 (£ 0.01) 97.59 (£ 0.02)

Discussion

An important finding is that even for relatively simple task protocols involving the classification of MNIST-digits, regularization-based methods such as EWC, Online EWC and
S| completely fail in the incremental class learning scenario (i.e., when task identity needs to be inferred as well). Only the replay-based methods DGR and DGR+distill are
capable of performing well in this scenario.
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