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Generative replay in deep neural networks
as a model for reactivation in the brain
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Replay to protect memories against forgetting

* The reactivation of neuronal activity patterns representing previous
experiences is thought to be an important brain mechanism for
Sta b|||Z|ng new memOFIeS [Wilson & McNaughton, 1994 Science; Rasch & Born, 2007 Curr Opin Neurobiol]

* A neural network ‘catastrophically’ forgets previously learned tasks
when presented with a new one, but could learn all tasks when
tra|nEd |n an |nter|eaVEd faS 1|On [McCloskey & Cohen, 1989 Psych Learn Motiv; Ratcliff, 1990 Psych Rev]

- Complementary Learning Systems: memories are initially
stored in the hippocampus, from where they are replayed to the
cortex to enable interleaved learning ucceiand et al, 1995 psyen rev

* Replaying stored data has become important tool in deep learning

[Rolnick et al., 2019 NeurlPS]



Storing data is undesirable, alternative is to

generate the data to be replayed

» Store data and interleave — “exact” or “experience replay”

Initial argument for role of replay in memory consolidation
[McClelland et al., 1995 Psych Rev]

But unclear how the brain could do directly store data

Not always possible (e.g., privacy concerns, limited storage)

* Use a generative model — “generative replay”

More realistic from neuroscience point of view
Views hippocampus as a generative neural network and replay as
a generative process, see also [Liu et al., 2018 Neuron; Liu et al., 2019 Cell]

Learning a generative model as a more scalable, privacy-
preserving way of remembering previous seen data
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Test accuracy

Generative replay works well on toy problems,
but breaks down with more complex inputs
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e The inability of replay to scale to realistic problems in a biologically plausible way (i.e., without
storing data) raises doubt about how replay could underlie memory consolidation in the brain

[van de Ven et al., 2020 Nat Commun; see also Lesort et al., 2019 IJCNN; Aljundi et al., 2019 NeurlPS]



With brain-inspired modifications, generative
replay can scale to challenging problems

Replay-through-Feedback: Merge

now generated by the feedback /
backward connections
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Conditional Replay: Enable model to
generate specific classes, by replacing
standard normal prior by Gaussian
mixture with separate mode per class
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Gating based on Internal Context: For each
class, inhibit (or gate) a different subset of
neurons during generative backward pass
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Internal Replay: Replay internal or
hidden representations, instead of at
the input level (e.g., pixel level)
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For details:
van de Ven GM, Siegelmann HT, Tolias AS (2020) Brain-inspired
replay for continual learning with artificial neural networks.
Nature Communications, 11: 4069.



