
Brain-inspired replay for continual 
learning with artificial neural networks

Gido van de Ven, Hava Siegelmann & Andreas Tolias

van de Ven GM, Siegelmann HT, Tolias AS (2020) Brain-inspired 
replay for continual learning with artificial neural networks. 
Nature Communications, 11: 4069. 

For full details:

Code:  https://github.com/GMvandeVen/brain-inspired-replay

https://github.com/GMvandeVen/brain-inspired-replay


• When a neural network is trained on something new,
it ‘catastrophically’ forgets what was learned before

• Humans continually accumulate information throughout their lifetime
• A brain mechanism thought to underlie this ability is the replay of neuronal 

activity patterns that represent previous experiences

[McCloskey & Cohen, 1989 Psych Learn Motiv;  Ratcliff, 1990 Psych Rev]

[Wilson & McNaughton, 1994 Science;  O’Neill et al., 2010 TINS;  van de Ven et al., 2016 Neuron]

Motivation: 
Ø Use replay to enable artificial neural networks to do ‘continual learning’
Ø Use artificial neural networks as a computational model for replay in the brain

Introduction



• Store data and interleave  – “exact” or “experience replay”
• Initial argument for role of replay in memory consolidation

in the brain  [McClelland et al., 1995 Psych Rev]
• Unclear how the brain could do directly store data
• Not always possible (e.g., privacy concerns, limited storage)
• Problematic when scaling up to true lifelong learning

• Use a generative model – “generative replay”
• More realistic from neuroscience point of view
• Views hippocampus as a generative neural network and replay as 

a generative process; see also [Liu et al., 2018 Neuron; Liu et al., 2019 Cell]

• Learning a generative model as a more scalable, privacy-
preserving way of remembering previous seen data

How to add replay to artificial neural networks?



Does (generative) replay work?

• Generative replay works very well for MNIST-based continual learning problems
• For class-incremental learning, some form of replay even seems to be required

Generative Replay: Shin et al., 2017 NeurIPS
Synaptic Intelligence (SI): Zenke et al., 2017 ICML
Elastic Weight Consolidation (EWC): Kirckpatrick et al., 2017 PNAS
Learning without Forgetting (LwF): Li & Hoiem, 2017 IEEE T Pattern Anal
Context-dependent Gating (XdG): Masse et al., 2018 PNAS

A similar point was made it previous work:
• van de Ven & Tolias (2018) arXiv: 1809.10635
• van de Ven & Tolias (2019) NeurIPS Continual Learning workshop



But…    (1) MNIST digits are relatively easy to generate 
(2) constantly retraining on all previous tasks seems very inefficient

Robustness and efficiency of replay
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But…    (1) MNIST digits are relatively easy to generate 
(2) constantly retraining on all previous tasks seems very inefficient

How much replay is needed?How good does replay need to be?

à A perfect memory (storing everything) is not needed,
a low-quality generative model could suffice

à Fully replaying previous tasks is not needed,
replaying only a few examples could suffice

Robustness and efficiency of replay



(all methods use pre-trained convolutional layers)

Standard versions of generative replay break down on problems with more complex 
inputs (e.g., natural images)     [see also Lesort et al., 2019 IJCNN;  Aljundi et al., 2019 NeurIPS]

What about more complex inputs?

Class-incremental
CIFAR-100:



• Gating based on Internal Context: For each 
class, inhibit (or gate) a different subset of 
neurons during the generative backward pass

• Internal Replay: Replay internal or hidden 
representations, instead of at the input level 
(e.g., pixel level)

• Conditional Replay: Enable model to generate 
specific classes, by replacing the standard 
normal prior by a Gaussian mixture with a 
separate mode for each class

• Replay-through-Feedback:  Merge generator 
into main model; replay is now generated by 
the feedback / backward connections

Brain-inspired modifications to Generative Replay



(all methods use pre-trained convolutional layers)

Brain-inspired replay on natural images

Class-incremental
CIFAR-100:



(all methods use pre-trained convolutional layers)

Brain-inspired replay on natural images

Class-incremental
CIFAR-100:



• Replay is especially important for class-incremental 
learning (i.e., learning to distinguish between classes that 
are not observed together)

• Even replaying a few or poor-quality samples can 
substantially boost continual learning performance

• Scaling generative replay up to problems with more 
complicated inputs is nevertheless not straight-forward

• Modelling generative replay after the brain can 
substantially increase performance while lowering 
computational costs

• Our brain-inspired replay method replays internal or 
hidden representations that are generated by the 
network’s own, context-modulated feedback connections

Brain-inspired replay

Class-incremental learning
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