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Three types of continual learning

• Task-incremental learning
• Incrementally learn a set of clearly distinct tasks

• Domain-incremental learning
• Learn the same type of task, but with changing contexts

• Class-incremental learning
• Incrementally learn to distinguish between a growing number of classes

van de Ven & Tolias (2018) NeurIPS workshop, https://arxiv.org/abs/1904.07734

https://arxiv.org/abs/1904.07734


Class-incremental learning

• Main challenge:
à Learn to distinguish between classes that are not observed together



Strategies for class-incremental learning

• Store some of the past data

• Generative replay
• Learn a generative model to generate samples 

representative of past data

• Parameter Regularization
• Encourage parameters important for past tasks 

not to change too much when learning new tasks

• Bias-correction
• Correct the bias of the output layer, which tends 

to only predict recently seen classes, by making 
the magnitude of the output weights of all 
classes comparable

à Deep Generative Replay (DGR; Shin et al., 2017 NeurIPS)
Brain-Inspired Replay (BI-R; van de Ven et al., 2020 Nature Communications)

àOnly methods that do not store data are considered

à Elastic Weight Consolidation (EWC; Kirckpatrick et al., 2017 PNAS)
Synaptic Intelligence (SI; Zenke et al., 2017 ICML)

à CopyWeights with Re-init (CWR; Lomonaco & Maltoni, 2017 CoRL)
AR1 (Maltoni & Lomonaco, 2019 Neural Networks)
“Labels trick” (Zeno et al., 2019 arXiv)



Proposed strategy:  generative classification

Discriminative classifiers Generative classifiers

• Learn rules / shortcuts / features to 
distinguish between the classes to be learned

• Comparison between classes is during training

• Learn a model / template / representation for each 
class to be learned

• Comparison between classes is during inference



Proposed strategy:  generative classification

• Discriminative classifiers directly 
learn 𝑝 𝑦 𝒙 , or argmax

!
𝑝(𝑦|𝒙).

• With class-incremental learning, this 
is problematic because, based on 
the most recently seen data, the 
empirical version of 𝑝 𝑦 𝒙 is heavily 
biased towards the newer classes

• We instead learn 𝑝(𝒙, 𝑦), factorized 
as 𝑝 𝒙 𝑦 𝑝(𝑦), and classify using 
Bayes’ rule: 𝑝(𝑦|𝒙) ∝ 𝑝 𝒙 𝑦 𝑝(𝑦).
• With class-incremental learning, the 

empirical version of 𝑝 𝒙 𝑦 does not 
have any bias, while learning 𝑝(𝑦)
without forgetting is typically 
straight-forward

Discriminative classifiers Generative classifiers

Generative classification rephrases a class-incremental problem as a task-incremental 
problem, whereby each ‘task’ is to learn a class-conditional generative model.



Implementation for a proof-of-principle: 
VAE per class & importance sampling

• To learn the distributions 𝑝(𝒙|𝑦), we 
train a separate VAE model for each 
class 𝑦

• When classifying a test sample 𝒙"#$", 
for each class 𝑦, the class-conditional 
likelihood 𝑝 𝒙"#$" 𝑦 is estimated 
using importance sampling  

• The VAE models are chosen so that the total number of parameters is 
similar to the number of parameters used by generative replay

Class 1 Class 2 Class 3

. . . 

𝑝 𝒙!"#! 𝑦 = 1

!𝑦(𝒙!"#!) = argmax
$

𝑝 𝒙%&'% 𝑦 = 𝑖

Training

Classification
(1) Estimate likelihoods

(2) Classify using Bayes’ rule

𝑝 𝒙!"#! 𝑦 = 2 𝑝 𝒙!"#! 𝑦 = 3



Class-incremental learning benchmarks

• Task-based (left) vs. task-free (right)

• Other important differences between studies:
§ Data storage
§ Pre-training



How to use a pre-trained model?

• Use the pre-trained model as a 
fixed feature extractor

• Train VAE models on the extracted 
features rather than on the raw 
inputs (i.e., with reconstruction 
loss in the feature space!)

Class 1 Class 2 Class 3

. . . 

Pre-trained
feature 

extractor

VAE
models

• Reminiscent of recent studies performing generative replay in the 
feature space (van de Ven et al., 2020 Nature Communications;  Liu et al., 2020 CVPR-W)



Results

All experiments were performed 10 times with different random seeds, reported is the mean (± SEM) accuracy over these runs. Code to replicate: https://github.com/GMvandeVen/class-incremental-learning.
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Generative classification vs. generative replay

Generative classification?

Generate samples to train 
a discriminative classifier?

How to best use a given generative model?



Quality of the generative models underlying 
the generative classifier
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SLDA: a generative classifier in disguise

• SLDA (Hayes & Kanan, 2020 CVPR-W)  performs incremental linear discriminant analysis 
to the features extracted by a fixed, pre-trained deep neural network
• For MNIST and CIFAR-10, we applied SLDA directly on the pixel space

• SLDA can be interpreted as a generative classifier
• SLDA learns a mean vector 𝝁! for each class 𝑦 and a covariance matrix Σ that is shared 

between all classes, and the generative model that SLDA implicitly assumes for each class 𝑦 is 
given by 𝑝 𝒙 𝑦 = 𝑁(𝒙; 𝝁!, Σ)

• SLDA can only learn a linear classifier
• SLDA’s performance can be seen as the minimal attainable performance for a 

generative classifier, upon which can be improved when sufficient data is available



Results: a case for MNIST?

All experiments were performed 10 times with different random seeds, reported is the mean (± SEM) accuracy over these runs. Code to replicate: https://github.com/GMvandeVen/class-incremental-learning.

https://github.com/GMvandeVen/class-incremental-learning


Limitations / discussion / future work

• Inference with generative classifiers is slow, as likelihood must be 
computed/estimated for each possible class
à Likelihood estimation can be (a lot) more efficient
à Classification decisions could be made hierarchical

• How scalable is learning a new generative model for each class?
à In the comparison we controlled for total number of parameters
à Share parts of the generative models (e.g., using existing techniques for task-

incremental learning)



One-sentence summary

• Generative classification is a promising, “rehearsal-free” 
strategy for class-incremental learning
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