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 Artificial neural networks (ANNs) suffer from catastrophic forgetting
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* Biological neural networks are far superior in continual learning

* The brain replays previous experiences to stabilize memories
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* Replay can also solve catastrophic forgettin%in ANNs, but it is believed not to be a scalable solution

as (1) large amounts of data would have to
tasks is considered very inefficient

e stored and (2) constantly retraining on all previous

How good does replay need to be?
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- A perfect memory (storing everything) is not needed,
a low quality generative model could suffice

How much replay is needed?

1 -

2 —
32 0.8 /
© B
23 0.6
S= o
$ ©
o S 0.4 -
g = = Generative Replay
Z 0 02— - EWC S|
g = 0-EWC LwF

T T T T T v 1 B 1
Other 4 16 64 256
methods replayed samples per batch (log-scale)

= Fully replaying previous tasks is not needed,
replaying only a few examples could suffice
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Generative Replay Brain-inspired Replay

* Nevertheless, standard generative replay s i
does not scale to problems with many $ ., % B Y
tasks or with complex inputs e e S |
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* With several brain-inspired modifications . ; B e = P { T
(details at the poster!), generative replay £ ¥ i 'y ' . W Repiog T
is able to scale to such problems i vl e - 43  l
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Permuted MNIST: scaling to many tasks Incremental CIFAR100: scaling to complex inputs
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Offline (upper bound)
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Synaptic Intelligence
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