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Three types of 
incremental learning



• Identify three continual learning scenarios
• Intuitively describe them
• Define them formally in a restricted, ‘academic’ setting
• Generalize them to more flexible, ‘task-free’ settings

• Review strategies for continual learning

• Empirically compare these strategies on each scenario

Overview



• Main point of this paper:

What is continual learning?

A useful way to categorize continual learning problems 
is based on how the aspect of the data that changes 
over time relates to the mapping to be learned

• In classical machine learning, an algorithm has access to all training 
data at the same time

• With continual learning, two key differences are:
- the training data arrives incrementally
- the distribution from which the training data is sampled changes over time



Three continual learning scenarios: intuitively

• Task-incremental learning  (Task-IL)
• Incrementally learn a set of clearly distinguishable tasks

• Domain-incremental learning  (Domain-IL)
• Learn the same type of problem in different contexts

• Class-incremental learning  (Class-IL)
• Incrementally learn a growing number of classes

Main challenge:  achieve positive transfer between tasks

Main challenge:  alleviate catastrophic forgetting

Main challenge:  learn to discriminate between objects not observed together

See also the preprint:    van de Ven & Tolias (2019) Three scenarios for continual learning. arXiv preprint, https://arxiv.org/abs/1904.07734
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• Express each sample as consisting of:
• Input 𝑥 ∈ 𝒳
• Within-context label 𝑦 ∈ 𝒴
• Context label 𝑐 ∈ 𝒞

• Classification problem split in episodes learned sequentially, no overlap between episodes
• We call these episodes “contexts” (rather than “tasks”)

Formalization in “academic continual learning setting”

Global label 𝑔 ∈ 𝒢
(with 𝒢 = 𝒞 × 𝒴)

Split MNIST example

• The three scenarios can then be defined
based on how the context space 𝒞 relates
to the mapping to learn:



• Introduce distinction:
• Context set: collection of underlying distributions, denoted by 𝒟! !∈𝒞
• Data stream: sequence of experiences 𝑒$, 𝑒%, … presented to algorithm

• Every observation in the data stream can be sampled from any combination of 
underlying datasets from the context set:

s
whereby 𝑒! 𝑖 is observation 𝑖 of experience 𝑡 and 𝑝"

!,$ is the probability that this
observation is sampled from 𝒟".

• From a probabilistic perspective, this means two observations at different points in time 
can only differ w.r.t. the context(s) they are sampled from

à the context space 𝓒 describes the non-stationary aspect of the data

• Generalized versions of the three scenarios can be defined as before, based on how the
context space 𝒞 relates to the mapping to learn.

Generalization to more flexible settings: theory
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Generalization to more flexible settings: example



Strategies for continual learning

Context-specific components Parameter regularization Functional regularization

Template-based classificationReplay



Empirical comparison:  Split MNIST

The same sequence of contexts can be “performed” in three different ways:
à use for a direct comparison between the three scenarios



Empirical comparison:  Split MNIST

For method abbreviations and
references, see extra slide.

Shown is  final test accuracy (as %, averaged over all contexts). Academic continual learning setting was used. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative 
model was learned using extra parameters. Experiments were run 20 times, reported is mean (± SEM). More comparisons in the paper: Split CIFAR-100 and a ‘task-free’ version of Split MNIST.

PyTorch code for all experiments: https://github.com/GMvandeVen/continual-learning

https://github.com/GMvandeVen/continual-learning


Summary

• Continual learning is not a unitary problem: we describe three 
fundamentally different scenarios, each with their own challenges

• These scenarios differ substantially in terms of difficulty and in 
terms of the effectiveness of different computational strategies

• We formally define these scenarios in a restricted, ‘academic’ 
continual learning setting; and we generalize them to more 
flexible, ‘task-free’ settings

Update relative to preprint version (van de Ven & Tolias, 2019; arXiv):
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