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Part 1:
The Continual Learning Problem



The term ‘continual learning’

continual

* ‘Continual learning’ vs. ‘lifelong learning’ I
* Often used interchangeably %
* Popularity of ‘continual learning” more recent %
|
* Especially in recent years, the ‘continual learning’ - __“““""“I“ll
literature tends to have a more narrow focus: who s adto e ke
* Traditional ML: all training data available at same time Number of machine learning publications per

year, based on keyword occurrence in abstract.

e Continual learning: - training data arrives incrementally T endt ot ol /009, 1oL8)

- there is non-stationarity

These terms seem roughly to be used as follows:
- Continual learning narrow - how to deal with non-stationarity in training data
- Lifelong learning broad —+ everything relevant for agent learning throughout its lifetime


https://openreview.net/forum?id=rHMaBYbkkRJ

Continual learning in relation to other fields

Transfer Learning Multitask Learning Online Learning

. faining

......Training
Training

Training

Prediction
. Test
oSt

Prediction

One task - Multiple tasks - Multiple tasks - Multiple tasks - One task

Data available - Data arrive non-stationarity - Data arrive - Data available - Data arrive

at same time incrementally incrementally at same time incrementally
- Goal: all tasks - Goal: last task - Goal: all tasks

Source: De Lange et al. (2021, TPAMI)


https://ieeexplore.ieee.org/abstract/document/9349197?ref=https:%2F%2Fgithubhelp.com&casa_token=_nbUrsz4reIAAAAA:yeygoQ8Ylz6Rab8_zrMMc8D2VMLZvds9J4u6VuO2bGt2dVA2PTcF4GKGwb3irnT9PdjMRUwNJ9Y

The canonical continual learning example: Split MNIST

« MNIST dataset is split in multiple parts/episodes/tasks!” that must be learned sequentially
 After all tasks have been learned, the model should be good at all tasks

* Typically, no or only a small amount of data from past tasks can be stored

Task 1 Task 2 Task 3 Task 4 Task 5
213415 13
>
Time

Important problem: catastrophic forgetting

— When learning a new task, deep neural networks tend to rapidly forget past tasks

) Often the term “task” is used for this. Although this has some issues, given the widespread use, in this tutorial we mostly use this term.



Going beyond Split MNIST

* Splitting up existing image datasets:

Task 1 Task 2 Task 10

[ J CIFAR_lO H(1(/)clas?es) . (1Iasses) (10 classes)
e CIFAR-100 !mﬁ‘ i P‘. H.-..
iSelln BOEN. ~WEEE

* (Tiny)iImageNet

Source: van de Ven et al. (2020, Nature Communications)

» Datasets specific for continual learning:

Tk
- 7

* CORe50 comers | [N
e Stream-51 cones | R RE
 The CLEAR Benchmark :

Source: Lin et al. (2021, NeurlPS Datasets and Benchmarks Track)

Classification Ob]e?t . ; Semantic

Segmenfation Segmentation

* Beyond classification:
* Continual reinforcement learning ( ot
« Continual object detection B "
 Continual semantic segmentation ‘

Source: Toldo et al. (2020, Technologies)



https://arxiv.org/abs/2201.06289
https://www.mdpi.com/2227-7080/8/2/35
https://www.nature.com/articles/s41467-020-17866-2

CORe50: different types of continual learning

New classes

Adaptor Phone Scissors Lightbulb  Can Glasses Ball Marker Mug Remote
L)1 \ o 1Y

i

New
instances

Source: Lomonaco & Maltoni (2017, CoRL)


https://vlomonaco.github.io/core50/

Back to MNIST: three continual learning scenarios

Split MNIST:

Task 1

Task 3

Task 4

Type of choice

Task-incremental

Choice between the two digits of the task

Domain-incremental

Is the digit odd or even?

Class-incremental

Choice between all ten digits

At test time, is
task label given?

A

YES NO

l l

Task- Must task label
incremental be inferred?

learning ‘/\

NO YES
Domain- Class-
incremental incremental
learning learning

Source: van de Ven & Tolias (2018, NeurlPS workshop)


https://arxiv.org/abs/1904.07734

Three continual learning scenarios: intuitively

* Task-incremental learning (Task-IL) Y .

* Incrementally learn a set of clearly distinguishable tasks ).
Important challenge: achieve positive transfer between tasks
* Domain-incremental learning (Domain-IL)

e Learn the same type of problem in different contexts
Important challenge: alleviate catastrophic forgetting 'Q s Q '@ o
* Class-incremental learning (Class-IL) o

y- <.y - %
* Incrementally learn a growing number of classes N 4 “ ol
) 4 ’

Important challenge: learn to discriminate between objects not observed together -

Images designed by Freepik

Sources: van de Ven & Tolias (2018, NeurlPS workshop), van de Ven et al. (2022, Nature Machine Intelligence)


https://arxiv.org/abs/1904.07734
https://www.nature.com/articles/s42256-022-00568-3

Task-based vs. task-free continual learning

Data Stream :
Experiences

Task-based Task-free A// *

Task 1 Task 2 Task 3 e, e, e; e, es €s e, eg €y
nEanee 0] I O
\[1[0]0]/ 0

—_ —_—
Time \ / Time

Task-boundaries



Task-based vs. task-free: formalizing non-stationarity

Context Set

Collection of underlying data-distributions

Context 1 (D;)

Context 2 (D)

Context 3 (D3)| |Context 4 (D,)| |Context 5 (D)

Data Stream

Sequence of ‘experiences’ presented to algorithm

Task-based

e, e, e;
nEaneeE
\|1]0[0]/

T
Time

Task-free

e, | e; | e, | es | e5 | ey
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Task-based vs. task-free: formalizing non-stationarity

Context Set Context 1 (7);)| |Context 2 (D),)| [Context 3 (D)3)| |Context 4 (7),)| |Context 5 (/)

Collection of underlying data-distributions m . n
Data Stream

Sequence of ‘experiences’ presented to algorithm

4 [+ Ky
v\ B
| o B

Time



General framework

[1] Context Set

Collection of underlying data-distributions

changes over time?”

“What aspect of the data

[2] Data Stream

Sequence of ‘experiences’ presented to algorithm

~N

“How does that aspect
change over time?”

Context 1 (D;)

0]/

Context 2 (D)

EAE

Context 3 (D3)

4|S

Context 4 (/)

Context5 (/)

&

Schedule
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[3] Scenario

What is expected of the algorithm?

“How does that aspect relate
to the mapping to learn?”

Time

Type of choice

€,
0

—_—

e; | e, | es | e | e; | eg | €
Il ECHEAEBE

Mapping to learn

(Generalized) Task-IL

Choice between two digits of same context

(Generalized) Domain-IL

Is the digit odd or even?

(Generalized)

Class-IL

Choice between all ten digits

f: XxC»
¢ 9/ X =image pixel space
f: X- 9/ C = context space = {1,2,3,4,5}
f: X- CX 9/' _‘}/ = within-context label space = {0,1}




Part 2:
Continual Learning Strategies



Categorizations of continual learning strategies

Rehearsal Pseudo Constrained Prior-focused Data-focused

| Rehearsal | | | Network
iCaRL [18] | GEM [50] EWC [28] LwF [53]
ER [44] DGR[14] A-GEMI[8] IMM [29] LFL [54] PackNet [56]
SER [45] PR [47] GSS [43] SI[51] EBLL[11] PathNet [32]
TEM [46] CCLUGM [48] R-EWC[52] DMC [55] Piggyback
LGM [49] MAS [15] HAT [58
Walk [16]

Source: De Lange et al. (2021, TPAMI)

PNN [59]
Expert Gate [7]

DAN [19]

Architectural Strategies

® ®
CWR PNN

S o FN
‘x\GDM y

© O
AR1
N ;i
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EWC A
@
o ICARL
sl ~ EXSTREAM
. GEM
LWF

Regularization Strategies Rehearsal Strategies

Source: Maltoni & Lomonaco (2019, Neural Networks)

Rehearsal Generative Replay

y ° Pure
Rehearsal

A
\
Net \
© ICAR BV |
|
D . 0 EWC ® CWR |
Amhltectules o SI ® PNN //
o LWF ) /
1

=
Regularization ~ Architectural

Source: Lesort et al. (2020, Information Fusion)

Modularity-based methods Memory-based methods

Gradient-based approaches Meta-learning techniques
O = Impsrtancs Meta-learning (learning to learn)
oJor 000 oceo
Q@00 000 (OJOX0) \\
. O O . . O . . O Multiple task Ve
@O0 @000 QDPDOO \ RIS
000 0000 Q000 \ ooe o0 cee
@00 000 00
@00 L] @00
= 2 = = I R
Time Task 3

Source: Hadsell et al. (2020, Trends in Cognitive Sciences


https://ieeexplore.ieee.org/abstract/document/9349197?ref=https:%2F%2Fgithubhelp.com&casa_token=_nbUrsz4reIAAAAA:yeygoQ8Ylz6Rab8_zrMMc8D2VMLZvds9J4u6VuO2bGt2dVA2PTcF4GKGwb3irnT9PdjMRUwNJ9Y
https://www.sciencedirect.com/science/article/pii/S1566253519307377?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893608019300838?via%3Dihub
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(20)30219-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1364661320302199%3Fshowall%3Dtrue

Categorizations of continual learning strategies

Parameter regularization Functional regularization Replay
Task 1 Task 2
Task 2 loss Task 2 data 2 2
—
8 . : t t
© no reg S D (x®,y®).. (x@,y@)
§ TaSk 1 IOSS ““¢‘ S— g ; . ...:.‘ *(M)’y(M))
& Wl |
Parameter 2 Anchor X
points
Context-specific components Template-based classification
Class 2 template
— | Class 1
o | template ’
=] H
§ 5@
LL | ... . 8 .(.1 ) ..... .*x (test)
Feature 2

Source: van de Ven et al. (2022, Nature Machine Intelligence)



https://www.nature.com/articles/s42256-022-00568-3

Test accuracy
(over tasks so far)

Baselines: finetuning (lower target) & joint training (upper target)

None:

Joint:

Network sequentially trained Empirical comparison on Split MNIST according to each scenario

on eaCh taSk in the Standard Task 1 Task 2 Task 3 Task 4 Task 5
way (fower target) 01 £l
Task-incremental learning Choice between two digits of same task (e.g., 0 or 17)

Network trained on all tasks
at the same time (upper target)

Domain-incremental learning  Is the digit odd or even?

Class-incremental learning Choice between all ten digits

Task-incremental Domain-incremental Class-incremental
1+ Joint 14 Joint 14 Joint
- 0.8 4
0.95+4 0.9
0.8 - 0.6 4
0.9+
0.7 4 0.4 -
0.85+4
None 0.6 - None 0.2+ None
$l L] | | L} L] $l | | | | 0 | | | ] | | | | | |
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Tasks Tasks Tasks

Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://github.com/GMvandeVen/continual-learning

Regularization

* In continual learning, regularization typically means adding a penalty

term to the loss function to encourage the model to stay close to a
previous version of itself.

* Often, the version relative to which changes are penalized is a copy of
the model stored after finishing training on the last task

* Two forms of regularization:

Parameter regularization Functional regularization

Task 2 loss Task 2 data

‘_| @
‘a:) no re
3] g <
E| Tasklloss % =
a
o Mreeeenn »

+reg

e
Parameter 2 Anchor X



Test accuracy

Parameter regularization

* Parameters important for past tasks are encouraged not
to change too much when learning a new task

* Can often be interpreted as sequential approximate
Bayesian inference on the network’s parameters

* Representative methods:

- Elastic Weight Consolidation [EWC] (Kirkpatrick et al., 2017 PNAS)
- Synaptic Intelligence [S!] (Zenke et al., 2017 ICML)

Task-incremental Domain-incremental

Task 2 loss

i

)

© no reg
% Task 1 loss »

3

o )7 GRS »

+ reg

Parameter 2

Liotal = L + ”9 - 9*”2

0*: parameters relative to which changes are penalized
X : estimate of how important parameters are
II. ||z : weighted norm

1+ joint 1+ joint
EWC/¢
& 0.954 0.9
o
@ 0.8 4
§ 0.94
8 0.7 -
5 ,
> 0.85+4
L None 0.6 4 ﬁ‘(’)\’:e
1 2 3 4 5 1 2 3 4

Tasks

0.8 -

0.6 -

0.4 -

0.2 1

Class-incremental
Joint

EWC/
None

L] L] L] L]
2 3 4 5
Tasks
Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://doi.org/10.1073/pnas.1611835114
https://proceedings.mlr.press/v70/zenke17a
https://github.com/GMvandeVen/continual-learning

Functional regularization

* The input-output mapping learned
encouraged not to change too muc

inputs (the ‘anchor points’)

reviously is
at a particular set of

 Also referred to as knowledge distillation

* Representative methods:

- Learning without Forgetting |

] (Li & Hoiem, 2017 TPAMI)

- Functional Regularization Of Memorable Past [FROIVIP]

(Pan et al., 2020 NeurlPS)

Task-incremental

Test accuracy
(over tasks so far)

Joint
/ FROMP
EWC/

None

Memory buffer size (FROMP): 100 examples per class

Tasks

Domain-incremental

Liotal = L + (fGJ f9*>:fl

Task 2 data

f ()

Anchor X

points

fo+: function relative to which changes are penalized

A: set of ‘anchor points’ at which the divergence
between fg and fp~ is measured

Joint

\_‘.———’\ EROMP

EWC
None

0.6 -

0.4 -

0.2 1

Class-incremental

.;‘\\\\\\—--- Joint

0.8 -

— FROMP

EWC/
None

1 2 3 4 5

Tasks
Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://ieeexplore.ieee.org/abstract/document/8107520?casa_token=GdcoVXBBCVIAAAAA:iMmvmbsyYzo3N8GYKe5qzKSA7O1THV6O2C6s2c4uKPF44PrQgCTlsm24pxJ-5WDHyF6tIFeWmS0
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://github.com/GMvandeVen/continual-learning

Replay

C t training data i | ted with dat Task L Task 2

* Current training data is complemented with data

representative of past observations Q Q
* The replayed data can be sampled from a memory (X@,y®).. (X2 y@)

buffer or a generative model

* Representative methods:

- Experience Replay [ER] (Chaudhry et al., 2019 arXiv) ::-.) M

3 ()(g(M)’y(M))

- Deep Generative Replay [DGR] (Shin et al., 2017 NeurlPS)

b

Task-incremental

=
1

Joint
DGR/ER

/ FROMP
EWC/S

o

O

w
1

Test accuracy
(over contexts so far)

©

foe) o

0] (e}

| ] ]

None

~V

L] L] L] L] L]
1 2 3 4 5
Tasks
Memory buffer size (FROMP, ER): 100 examples per class

Domain-incremental Class-incremental
1- Joint
:§
f DGR/ER
0.9 0.81 ~—— FROMP
0.8 1 0.6 -
0.7 - . 0.4 -
0.6 0.2 - E]‘(’)vnce/
L] L} L} L} L} 0 L} | L} | | |
1 2 3 4 5 1 2 3 4 5
Tasks Tasks

Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://arxiv.org/abs/1902.10486
https://proceedings.neurips.cc/paper/2017/hash/0efbe98067c6c73dba1250d2beaa81f9-Abstract.html
https://github.com/GMvandeVen/continual-learning

Context-specific components

* Parts of the network are only used for specific tasks - %:E %
\»~‘hw¢"<(
* Commonly used example: multi-headed output layer NS\ — Shared
Y P but fay QOO o

\ 4\\ Ab /‘B
/’1V> <r *Nr

oxoxoxoxa

A\ 4‘\ /A

Requires knowledge of task identity at test time

Representative methods:
- Context-dependent Gating [XdG] (Masse et al., 2018 PNAS)
- Separate Networks [SepN]

Task-incremental

14 Joint
SepN/XdG
DGR/ER
= 0.954 /FROMP
>N 4= ' EWC/ e Ce
o Context-specific components can only be used
5L 0.9- with domain- or class-incremental learning when
© ©
e combined with a module for context identification
F > 0.85+
° None

| | | | | |
1 2 3 4 5
Tasks
Memory buffer size (FROMP, ER): 100 examples per class Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://doi.org/10.1073/pnas.1803839115
https://github.com/GMvandeVen/continual-learning

Template-based classification

* A ‘template’ is learned for each class, and classification is performed Class 2 template

based on which template is most suitable for sample to be classified Class 1

. template
* Examples of templates are prototypes or generative models

Feature 1
o)
=

* Allows comparing classes ‘at test time’, rather than during training %[ S ¥ test)

* Representative methods:
- Incremental Classifier and Representation Learning [iCaRL] (Rebuffi et al., 2017 CVPR) Feature 2
- Generative Classifier [GenC] (van de Ven et al., 2021 CVPR-W)

Class-incremental

b

1- Joint
GenC/iCaRL
DGR /ER
= 0.8 1 R OMp
(U . . . . v j | |
§§ Template-based classification methods could, in o
S ¥ theory, be used for all three scenarios, but its specific
© ©
7 benefit is only relevant for class-incremental learning 0.4
>
o EWC/
- 0.24 None
0

| | | | | | |
1 2 3 4 5
Tasks
Memory buffer size ( , ER, iCaRL): 100 examples per class Code for these experiments: https://github.com/GMvandeVen/continual-learning


https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/CLVision/html/van_de_Ven_Class-Incremental_Learning_With_Generative_Classifiers_CVPRW_2021_paper.html
https://github.com/GMvandeVen/continual-learning

Overview: Split CIFAR-100

Strategy Method Budget GM Task-IL Domain-IL Class-IL
None — lower target 61.43 (£ 0.36) 1842 (£ 0.33) HFL(E :i18)

biselines Joint — upper target 78.78 (£ 0.25)  46.85(£0.51)  49.78 (+ 0.21)
T — Separate Networks - - 76.83 (= 0.25) - -
P P XdG 5 - 69.86 (£ 0.34) - -

T T EWC = = 76.34 (£ 0.29) 21.65 (£ 0.55) 8.24 (+ :! 5)

& SI - - 74.84 (£ 0.39) 22.58 (£ 0.42) 8.10 (£ 0.24)

Pl LwF - - 78.59 (£ 0.24) 29.45 (£ 0.39) 2537 ¢x 0.2

g FROMP 100 - not run not run not run

Rebi DGR = yes 71.40 (£ 0.32) 20.52 (£ 0.43) 9.67 (£ :! 2)

e ER 100 - 76.43 (£ 0.24)  39.00 (£ 0.34)  37.57 (£ 0.21)

. ; Generative Classifier - yes - - 46.83 (= 0.18)

Template-based classification {CaRL 100 ] ) ) 37.83 (+ (21)

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (+ SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)



https://www.nature.com/articles/s42256-022-00568-3

Overview: Split CIFAR-100

Strategy Method Budget GM Task-IL Domain-IL Class-IL
Buseli None — lower target 61.43 (£ 0.36) 1842 (£ 0.33) 7P 1 0.18)
R Joint — upper target 78.78 (£ 0.25)  46.85(£0.51)  49.78 (+ 0.21)
T — Separate Networks - - 76.83 (= 0.25) - -
P P XdG . . 69.86 (& 0.34) - .
R A EWC - 76.34 (& 0.29) 21.65 (& 0.55) 8.24 (£ 0.25)
g SI - 74.84 (4 0.39) 22.58 (£ 0.42) 8.10 (& 0.24)
Pl LwF - 78.59 (& 0.24) 29.45 (£ 0.39) 25.31¢=0.27)
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Rebi DGR - yes 71.40 (& 0.32) 20.52 (£ 0.43) 9.67 (£ 0.22)
e ER 100 - 76.43 (£ 0.24)  39.00 (£ 0.34)  37.57 (£ 0.21)
. ; Generative Classifier - yes - - 46.83 (= 0.18)
Template-based classification {CaRL 100 ] ) ) 37.83 (4 0.21)

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (+ SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)



https://www.nature.com/articles/s42256-022-00568-3

Overview: Split CIFAR-100

Strategy Method Budget GM Task-IL Domain-IL Class-IL
Buseli None — lower target 61.43 (£ 0.36) 1842 (£ 0.33) 7P 1 0.18)
R Joint — upper target 78.78 (£ 0.25)  46.85(£0.51)  49.78 (+ 0.21)
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Sy ER 100 76.43 (+ 0.24)  39.00 (+0.34)  37.57 (+0.21)

Generative Classifier

Template-based classification {CaRL

46.83 (£ 0.18)
31.83 (£ 0.21)

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (+ SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)
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Strategy Method Budget GM Task-IL Domain-IL Class-IL
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Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (+ SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)



https://www.nature.com/articles/s42256-022-00568-3

Summary

e Continual learning is not a unitary problem: we discussed three
scenarios that differ substantially in terms of difficulty and in
terms of the effectiveness of different computational strategies

* Regularization-based methods often have relatively low memory
and computational costs, but they struggle in certain settings

* Replay can work well in all three scenarios, but has relatively high
memory and computational costs

* Class-incremental learning seems to require either replay (to
allow comparing classes during training) or template-based
classification (to allow comparing classes during inference)



