
Tutorial:
“Deep Continual Learning”

Gido van de Ven
E-mail: gido.vandeven@kuleuven.be

Website: https://gmvandeven.github.io

Dagstuhl Seminar

20 March 2023

mailto:gido.vandeven@kuleuven.be
https://gmvandeven.github.io

Part 1:
The Continual Learning Problem

The term ‘continual learning’

• ‘Continual learning’ vs. ‘lifelong learning’
• Often used interchangeably

• Popularity of ‘continual learning’ more recent

• Especially in recent years, the ‘continual learning’
literature tends to have a more narrow focus:
• Traditional ML: all training data available at same time

• Continual learning: - training data arrives incrementally
- there is non-stationarity

Number of machine learning publications per
year, based on keyword occurrence in abstract.
Source: Mundt et al. (2022, ICLR)

These terms seem roughly to be used as follows:
- Continual learning narrow how to deal with non-stationarity in training data
- Lifelong learning broad everything relevant for agent learning throughout its lifetime

https://openreview.net/forum?id=rHMaBYbkkRJ

Continual learning in relation to other fields

Source: De Lange et al. (2021, TPAMI)

Standard ML Continual Learning Online Learning

- One task
- Data available

at same time

Multitask Learning

- Multiple tasks
- Data available

at same time
- Goal: all tasks

Transfer Learning

- Multiple tasks
- Data arrive

incrementally
- Goal: last task

- Multiple tasks
- Data arrive

incrementally
- Goal: all tasks

- One task

- Data arrive
incrementally

non-stationarity

https://ieeexplore.ieee.org/abstract/document/9349197?ref=https:%2F%2Fgithubhelp.com&casa_token=_nbUrsz4reIAAAAA:yeygoQ8Ylz6Rab8_zrMMc8D2VMLZvds9J4u6VuO2bGt2dVA2PTcF4GKGwb3irnT9PdjMRUwNJ9Y

The canonical continual learning example: Split MNIST

• MNIST dataset is split in multiple parts/episodes/tasks(*) that must be learned sequentially

• After all tasks have been learned, the model should be good at all tasks

• Typically, no or only a small amount of data from past tasks can be stored

(*) Often the term “task” is used for this. Although this has some issues, given the widespread use, in this tutorial we mostly use this term.

Important problem: catastrophic forgetting

→ When learning a new task, deep neural networks tend to rapidly forget past tasks

Time

Going beyond Split MNIST

• Splitting up existing image datasets:
• CIFAR-10
• CIFAR-100
• (Tiny)ImageNet
• …

• Datasets specific for continual learning:
• CORe50
• Stream-51
• The CLEAR Benchmark
• …

• Beyond classification:
• Continual reinforcement learning
• Continual object detection
• Continual semantic segmentation
• …

Source: Lin et al. (2021, NeurIPS Datasets and Benchmarks Track)

Source: Toldo et al. (2020, Technologies)

Source: van de Ven et al. (2020, Nature Communications)

https://arxiv.org/abs/2201.06289
https://www.mdpi.com/2227-7080/8/2/35
https://www.nature.com/articles/s41467-020-17866-2

CORe50: different types of continual learning

New
instances

New classes

Phone Scissors Lightbulb Can Glasses Ball Marker Mug RemoteAdaptor

Source: Lomonaco & Maltoni (2017, CoRL)

https://vlomonaco.github.io/core50/

Split MNIST:
At test time, is

task label given?

NOYES

NO YES

Must task label
be inferred?

Task-
incremental

learning

Domain-
incremental

learning

Class-
incremental

learning

Back to MNIST: three continual learning scenarios

Source: van de Ven & Tolias (2018, NeurIPS workshop)

https://arxiv.org/abs/1904.07734

Three continual learning scenarios: intuitively

• Task-incremental learning (Task-IL)
• Incrementally learn a set of clearly distinguishable tasks

• Domain-incremental learning (Domain-IL)
• Learn the same type of problem in different contexts

• Class-incremental learning (Class-IL)
• Incrementally learn a growing number of classes

Important challenge: achieve positive transfer between tasks

Important challenge: alleviate catastrophic forgetting

Important challenge: learn to discriminate between objects not observed together
Images designed by Freepik

Sources: van de Ven & Tolias (2018, NeurIPS workshop), van de Ven et al. (2022, Nature Machine Intelligence)

https://arxiv.org/abs/1904.07734
https://www.nature.com/articles/s42256-022-00568-3

Task-based Task-free

Task-based vs. task-free continual learning

Task-boundaries

Experiences

Time Time

[2] Data Stream

Task-based Task-free

Task-based vs. task-free: formalizing non-stationarity

Time Time

Sequence of ‘experiences’ presented to algorithm

[2] Data Stream

[1] Context Set
Collection of underlying data-distributions

[2] Data Stream

[1] Context Set
Collection of underlying data-distributions

Sequence of ‘experiences’ presented to algorithm

Task-based vs. task-free: formalizing non-stationarity

Time

Schedule

General framework

Time

[2] Data Stream

[1] Context Set
Collection of underlying data-distributions

[3] Scenario[3]

[2]

[1]

What is expected of the algorithm?

Sequence of ‘experiences’ presented to algorithm

“What aspect of the data
changes over time?”

“How does that aspect relate
to the mapping to learn?”

“How does that aspect
change over time?”

Schedule

Part 2:
Continual Learning Strategies

Categorizations of continual learning strategies

Source: De Lange et al. (2021, TPAMI)
Source: Lesort et al. (2020, Information Fusion)

Source: Maltoni & Lomonaco (2019, Neural Networks)
Source: Hadsell et al. (2020, Trends in Cognitive Sciences)

Modularity-based methods

Gradient-based approaches

Memory-based methods

Meta-learning techniques

https://ieeexplore.ieee.org/abstract/document/9349197?ref=https:%2F%2Fgithubhelp.com&casa_token=_nbUrsz4reIAAAAA:yeygoQ8Ylz6Rab8_zrMMc8D2VMLZvds9J4u6VuO2bGt2dVA2PTcF4GKGwb3irnT9PdjMRUwNJ9Y
https://www.sciencedirect.com/science/article/pii/S1566253519307377?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893608019300838?via%3Dihub
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(20)30219-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1364661320302199%3Fshowall%3Dtrue

Categorizations of continual learning strategies

Parameter regularization Functional regularization

Template-based classification

Replay

Context-specific components

Source: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3

Baselines: finetuning (lower target) & joint training (upper target)

None: Network sequentially trained
on each task in the standard
way (lower target)

 Joint: Network trained on all tasks
at the same time (upper target)

Domain-incrementalTask-incremental Class-incremental

Empirical comparison on Split MNIST according to each scenario

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Split MNIST

https://github.com/GMvandeVen/continual-learning

Regularization

• In continual learning, regularization typically means adding a penalty
term to the loss function to encourage the model to stay close to a
previous version of itself.

•Often, the version relative to which changes are penalized is a copy of
the model stored after finishing training on the last task

• Two forms of regularization:
Parameter regularization Functional regularization

Parameter regularization

• Parameters important for past tasks are encouraged not
to change too much when learning a new task

• Can often be interpreted as sequential approximate
Bayesian inference on the network’s parameters

• Representative methods:
- Elastic Weight Consolidation [EWC] (Kirkpatrick et al., 2017 PNAS)
- Synaptic Intelligence [SI] (Zenke et al., 2017 ICML)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Split MNIST

https://doi.org/10.1073/pnas.1611835114
https://proceedings.mlr.press/v70/zenke17a
https://github.com/GMvandeVen/continual-learning

Functional regularization

• The input-output mapping learned previously is
encouraged not to change too much at a particular set of
inputs (the ‘anchor points’)

• Also referred to as knowledge distillation

• Representative methods:
- Learning without Forgetting [LwF] (Li & Hoiem, 2017 TPAMI)
- Functional Regularization Of Memorable Past [FROMP]

(Pan et al., 2020 NeurIPS)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learning Memory buffer size (FROMP): 100 examples per class

Split MNIST

https://ieeexplore.ieee.org/abstract/document/8107520?casa_token=GdcoVXBBCVIAAAAA:iMmvmbsyYzo3N8GYKe5qzKSA7O1THV6O2C6s2c4uKPF44PrQgCTlsm24pxJ-5WDHyF6tIFeWmS0
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://github.com/GMvandeVen/continual-learning

Replay

• Current training data is complemented with data
representative of past observations

• The replayed data can be sampled from a memory
buffer or a generative model

• Representative methods:
- Experience Replay [ER] (Chaudhry et al., 2019 arXiv)
- Deep Generative Replay [DGR] (Shin et al., 2017 NeurIPS)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learning Memory buffer size (FROMP): 100 examples per classMemory buffer size (FROMP, ER): 100 examples per class

Split MNIST

https://arxiv.org/abs/1902.10486
https://proceedings.neurips.cc/paper/2017/hash/0efbe98067c6c73dba1250d2beaa81f9-Abstract.html
https://github.com/GMvandeVen/continual-learning

Context-specific components

• Parts of the network are only used for specific tasks

• Commonly used example: multi-headed output layer

• Requires knowledge of task identity at test time

• Representative methods:
- Context-dependent Gating [XdG] (Masse et al., 2018 PNAS)
- Separate Networks [SepN]

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learning Memory buffer size (FROMP, ER): 100 examples per class

Context-specific components can only be used
with domain- or class-incremental learning when
combined with a module for context identification

Split MNIST

https://doi.org/10.1073/pnas.1803839115
https://github.com/GMvandeVen/continual-learning

Domain-incrementalTask-incremental Class-incremental

Template-based classification

• A ‘template’ is learned for each class, and classification is performed
based on which template is most suitable for sample to be classified

• Examples of templates are prototypes or generative models

• Allows comparing classes ‘at test time’, rather than during training

• Representative methods:
- Incremental Classifier and Representation Learning [iCaRL] (Rebuffi et al., 2017 CVPR)
- Generative Classifier [GenC] (van de Ven et al., 2021 CVPR-W)

Memory buffer size (FROMP, ER): 100 examples per classMemory buffer size (FROMP, ER, iCaRL): 100 examples per class

Template-based classification methods could, in
theory, be used for all three scenarios, but its specific
benefit is only relevant for class-incremental learning

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Split MNIST

https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/CLVision/html/van_de_Ven_Class-Incremental_Learning_With_Generative_Classifiers_CVPRW_2021_paper.html
https://github.com/GMvandeVen/continual-learning

Overview: Split CIFAR-100

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (± SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3

Overview: Split CIFAR-100

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (± SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3

Overview: Split CIFAR-100

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (± SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3

Overview: Split CIFAR-100

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (± SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3

Summary

•Continual learning is not a unitary problem: we discussed three
scenarios that differ substantially in terms of difficulty and in
terms of the effectiveness of different computational strategies

• Regularization-based methods often have relatively low memory
and computational costs, but they struggle in certain settings

• Replay can work well in all three scenarios, but has relatively high
memory and computational costs

• Class-incremental learning seems to require either replay (to
allow comparing classes during training) or template-based
classification (to allow comparing classes during inference)

