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The Continual Learning Problem

-> Optimize the parameters 0 of a neural network fg for
two tasks that are observed one after the other
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The Continual Learning Problem

-> Optimize the parameters 0 of a neural network fg for
two tasks that are observed one after the other
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Focus on classification:

fo models pg(y|x), the con
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Elastic Weight Consolidation (EWC)

* One of the most popular continual learning methods, >8000 citations (coogle Scholar)
» Used as baseline in large proportion of continual learning studies
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Elastic Weight Consolidation (EWC)

* One of the most popular continual learning methods, >8000 citations (coogle Scholar)
» Used as baseline in large proportion of continual learning studies

* When training on a new task, EWC adds an extra term to the loss:
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A Closer Look at the Fisher Information

Following Martens. 2020 - JMLR, the i*" diagonal element of the network’s Fisher
Information matrix on the data of the old task, is defined as:
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(1) An outer expectation over D4, the input distribution of the old task
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(2) Aninner expectation overpg (y|x), the conditional distribution of y given x,
defined by the network after training on the old task



A Closer Look at the Fisher Information

Following Martens. 2020 - JMLR, the i*" diagonal element of the network’s Fisher
Information matrix on the data of the old task, is defined as:
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bhere are two expectations:
(1) An outer expectation over D4, the input distribution of the old task

(2) Aninner expectation overpg_ . (y|x), the conditional distribution of y given x,
defined by the network after training on the old task



Different Ways to Compute the Fisher:
(1) Exact

« Outer expectation: estimate using all training data D ;14

* Inner expectation: compute exactly
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Different Ways to Compute the Fisher:
(2) S5ampling data points

« Outer expectation: estimate using n random samples from D4
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Different Ways to Compute the Fisher:
(3) Sampling labels

«» Outer expectation: estimate using over all training data D ;4
* Inner expectation: estimate using a single Monte Carlo sample

) with ¢, randomly sampled from pg_ (. ]x)
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Different Ways to Compute the Fisher:
(4) Empirical Fisher

« Outer expectation: estimate using all training data D ;14

* Inner expectation: approximate by computing the squared gradient
only for the ground-truth label

2
Fii — 1 2 dlogpe (¥|x)
old |Dold| Xy 06! 0=0,4

(x,y)€Do14
Definition
[ )
| will refer to this option as EMPIRICAL — lE”‘ l(aloggngx) )]
old L 0=0,,4
. J

od



Different Ways to Compute the Fisher:
(5) Batched approximation of Empirical Fisher

« Outer expectation: estimate by averaging over batched version of D ;4

* Inner expectation: approximate using the square of mini-batch
averaged gradients w.r.t. ground-truth labels
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Empirical Comparisons - Split MNIST

Test accuracy (in %)
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Empirical Comparisons - Split CIFAR-10
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Conclusion

* The way in which the Fisher Information is computed can have
substantial impact on the performance of EWC

Recommendations

(1) When using EWC, give details of how the Fisher is computed

(2) Do not simply “use the best performing hyperparameters from

another paper’, if you cannot guarantee that the Fisher is
computed in the same way

(3) It might be better to estimate the Fisher with fewer training
samples, than to cut corners in some other way



