

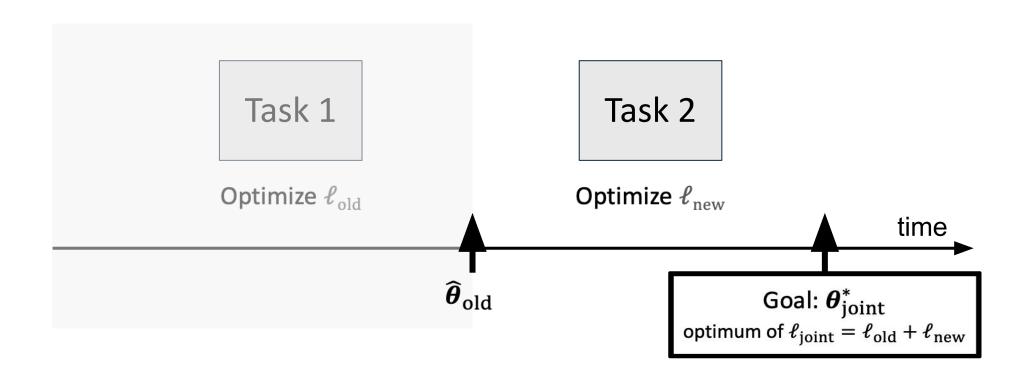
On the Computation of the Fisher Information in Continual Learning

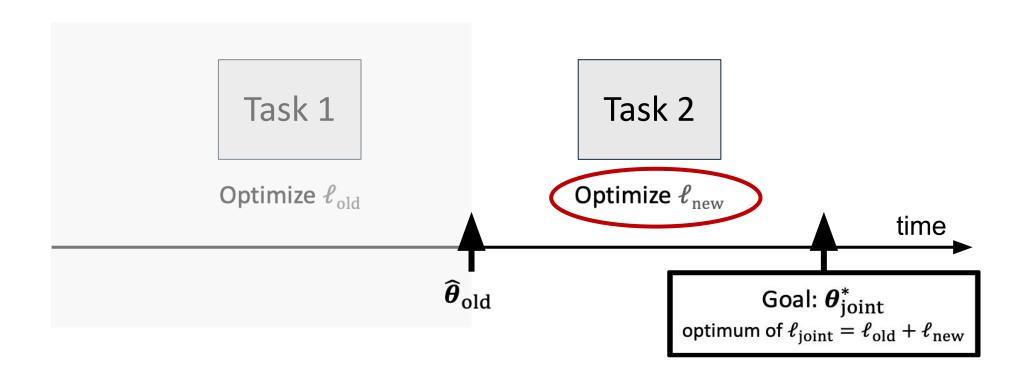
Blog post, ICLR 2025

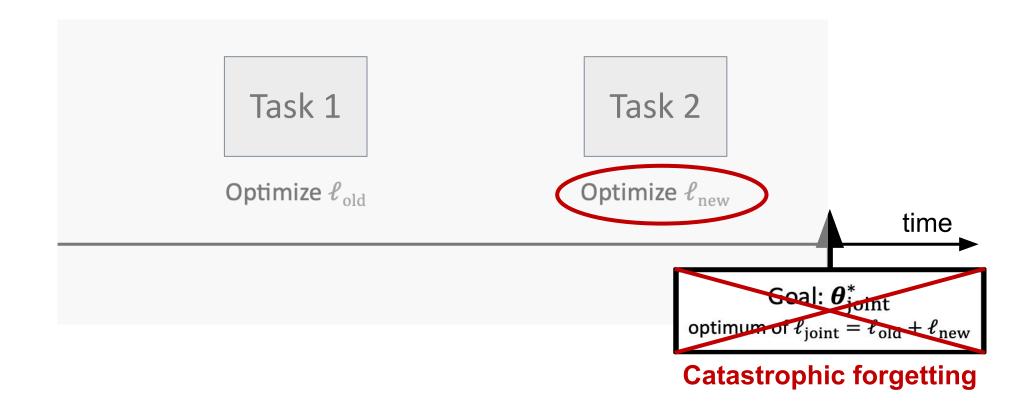
Gido van de Ven

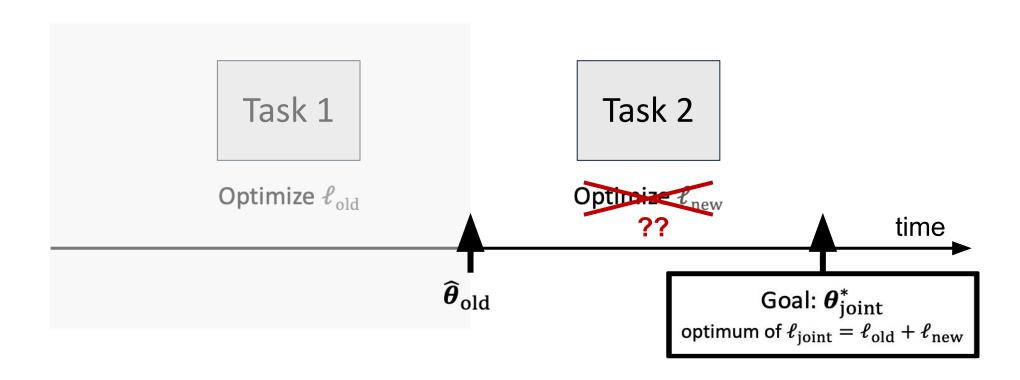
_

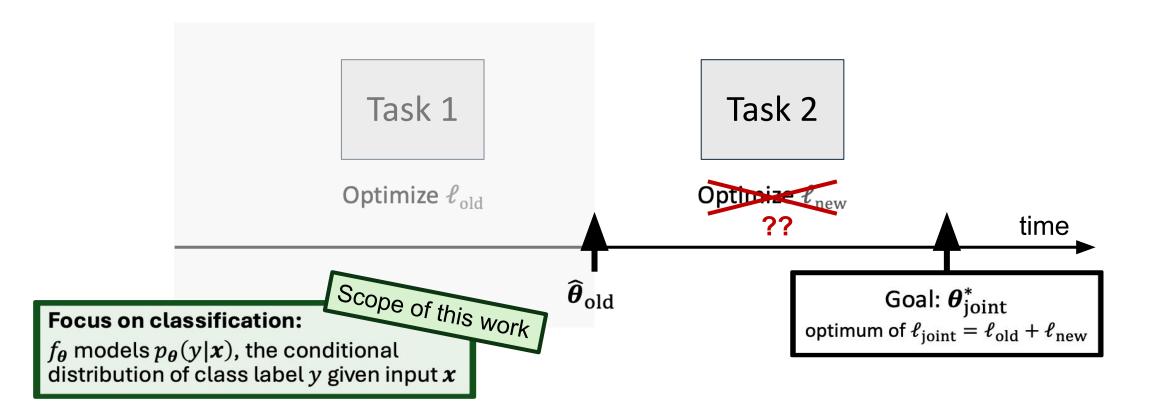
April 2025











Elastic Weight Consolidation (EWC)

- One of the most popular continual learning methods, >8000 citations (Google Scholar)
- Used as baseline in large proportion of continual learning studies

Overcoming catastrophic forgetting in neural networks

James Kirkpatrick^{a,1}, Razvan Pascanu^a, Neil Rabinowitz^a, Joel Veness^a, Guillaume Desjardins^a, Andrei A. Rusu^a, Kieran Milan^a, John Quan^a, Tiago Ramalho^a, Agnieszka Grabska-Barwinska^a, Demis Hassabis^a, Claudia Clopath^b, Dharshan Kumaran^a, and Raia Hadsell^a

March, 2017

Elastic Weight Consolidation (EWC)

- One of the most popular continual learning methods, >8000 citations (Google Scholar)
- Used as baseline in large proportion of continual learning studies
- When training on a new task, EWC adds an extra term to the loss:

$$\ell_{\text{EWC}}(\boldsymbol{\theta}) = \ell_{\text{new}}(\boldsymbol{\theta}) + \frac{\lambda}{2} \sum_{i=1}^{N_{\text{params}}} F_{\text{old}}^{i,i} (\theta^i - \hat{\theta}_{\text{old}}^i)^2$$

 i^{th} diagonal element of the old network's Fisher Information matrix on the old task

Elastic Weight Consolidation (EWC)

- One of the most popular continual learning methods, >8000 citations (Google Scholar)
- Used as baseline in large proportion of continual learning studies
- When training on a new task, EWC adds an extra term to the loss:

$$\ell_{\text{EWC}}(\boldsymbol{\theta}) = \ell_{\text{new}}(\boldsymbol{\theta}) + \frac{\lambda}{2} \sum_{i=1}^{N_{\text{params}}} F_{\text{old}}^{i,i} (\theta^i - \hat{\theta}_{\text{old}}^i)^2$$

*i*th diagonal element of the old network's Fisher Information matrix on the old task

My claim: EWC is usually implemented sub-optimally, and most of its currently reported results can likely be improved

Following Martens, 2020 - JMLR, the i^{th} diagonal element of the network's Fisher Information matrix on the data of the old task, is defined as:

$$F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

Following Martens, 2020 - JMLR, the i^{th} diagonal element of the network's Fisher Information matrix on the data of the old task, is defined as:

$$F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

There are two expectations:

- (1) An **outer expectation** over \mathcal{D}_{old} , the input distribution of the old task
- (2) An **inner expectation** over $p_{\widehat{\theta}_{\text{old}}}(y|x)$, the conditional distribution of y given x, defined by the network after training on the old task

Following Martens, 2020 - JMLR, the i^{th} diagonal element of the network's Fisher Information matrix on the data of the old task, is defined as:

$$F_{\text{old}}^{i,i} = \mathbb{E}_{x \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{y \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(y|x)}{\partial \theta^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

There are two expectations:

- (1) An **outer expectation** over \mathcal{D}_{old} , the input distribution of the old task
- (2) An **inner expectation** over $p_{\widehat{\theta}_{\text{old}}}(y|x)$, the conditional distribution of y given x, defined by the network after training on the old task

Following Martens, 2020 - JMLR, the i^{th} diagonal element of the network's Fisher Information matrix on the data of the old task, is defined as:

$$F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

There are two expectations:

- (1) An **outer expectation** over \mathcal{D}_{old} , the input distribution of the old task
- (2) An **inner expectation** over $p_{\widehat{\theta}_{\text{old}}}(y|x)$, the conditional distribution of y given x, defined by the network after training on the old task

Different Ways to Compute the Fisher: (1) Exact

- ullet Outer expectation: estimate using all training data $D_{
 m old}$
- Inner expectation: compute exactly

$$F_{\text{old}}^{i,i} = \frac{1}{|D_{\text{old}}|} \sum_{\mathbf{x} \in D_{\text{old}}} \left(\sum_{\mathbf{y}=1}^{N_{\text{classes}}} p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}(\mathbf{y}|\mathbf{x}) \left(\frac{\partial \log p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})}{\partial \theta^{i}} \bigg|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right)$$

I will refer to this option as **EXACT**

$$\boxed{ \begin{aligned} & \text{Definition} \\ & F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^i} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^2 \right] \right] } \end{aligned} }$$

Different Ways to Compute the Fisher: (2) Sampling data points

- ullet Outer expectation: estimate using n random samples from D_{old}
- Inner expectation: compute exactly

$$F_{\text{old}}^{i,i} = \frac{1}{n} \sum_{\boldsymbol{x} \in S_{D_{\text{old}}}^{(n)}} \left(\sum_{y=1}^{N_{\text{classes}}} p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}(y|\boldsymbol{x}) \left(\frac{\partial \log p_{\boldsymbol{\theta}}(y|\boldsymbol{x})}{\partial \theta^{i}} \bigg|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right)$$

I will explore this option using n=500, referring to it as **EXACT** (n=500)

Definition
$$F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

Different Ways to Compute the Fisher: (3) Sampling labels

- ullet Outer expectation: estimate using over all training data $D_{
 m old}$
- Inner expectation: estimate using a single Monte Carlo sample

$$F_{\text{old}}^{i,i} = \frac{1}{|D_{\text{old}}|} \sum_{\mathbf{x} \in D_{\text{old}}} \left(\frac{\partial \log p_{\boldsymbol{\theta}} \left(c_{\mathbf{x}} | \mathbf{x} \right)}{\partial \theta^{i}} \bigg|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \text{ with } c_{\mathbf{x}} \text{ randomly sampled from } p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}(. | \mathbf{x})$$

I will refer to this option as **SAMPLE**

Definition
$$F_{\text{old}}^{i,i} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right]$$

Different Ways to Compute the Fisher: (4) Empirical Fisher

- ullet Outer expectation: estimate using all training data $D_{
 m old}$
- Inner expectation: approximate by computing the squared gradient only for the ground-truth label

$$F_{\text{old}}^{i,i} = \frac{1}{|D_{\text{old}}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in D_{\text{old}}} \left(\frac{\partial \log p_{\boldsymbol{\theta}} (\boldsymbol{y} | \boldsymbol{x})}{\partial \theta^{i}} \bigg|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2}$$

I will refer to this option as EMPIRICAL

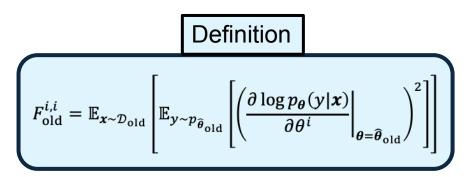
$$\boxed{ \begin{aligned} F_{\text{old}}^{i,i} &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\text{old}}} \left[\mathbb{E}_{\boldsymbol{y} \sim p_{\widehat{\boldsymbol{\theta}}_{\text{old}}}} \left[\left(\frac{\partial \log p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})}{\partial \boldsymbol{\theta}^{i}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}} \right)^{2} \right] \right] } \end{aligned}}$$

Different Ways to Compute the Fisher: (5) Batched approximation of Empirical Fisher

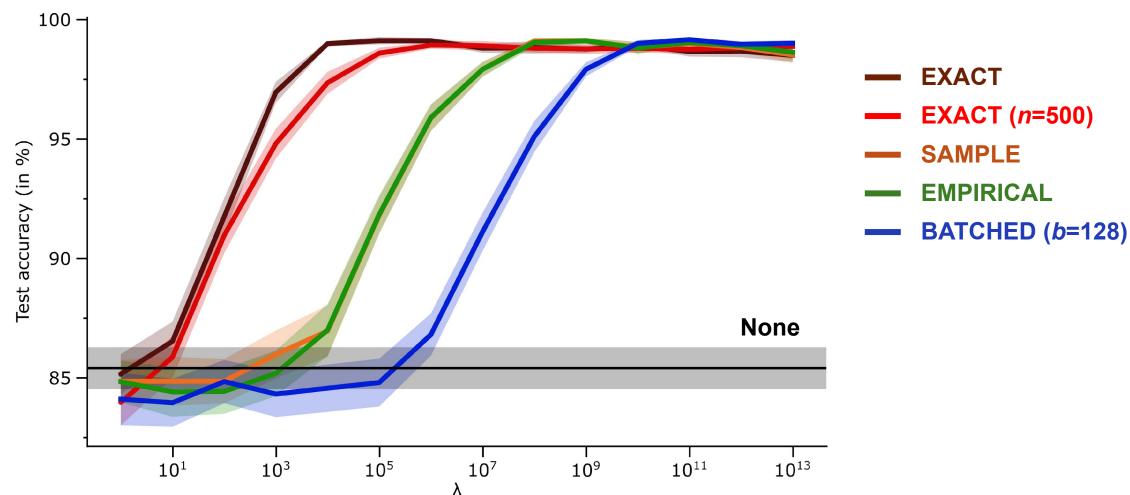
- ullet Outer expectation: estimate by averaging over batched version of $D_{
 m old}$
- Inner expectation: approximate using the square of mini-batch averaged gradients w.r.t. ground-truth labels

$$F_{\text{old}}^{i,i} = \frac{1}{\left|D_{\text{old}}^{(b)}\right|} \sum_{\mathbf{B} \in D_{\text{old}}^{(b)}} \left(\sum_{(\mathbf{x},\mathbf{y}) \in \mathbf{B}} \frac{\partial \log p_{\theta}\left(\mathbf{y}|\mathbf{x}\right)}{\partial \theta^{i}} \right|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\text{old}}}\right)^{2}$$

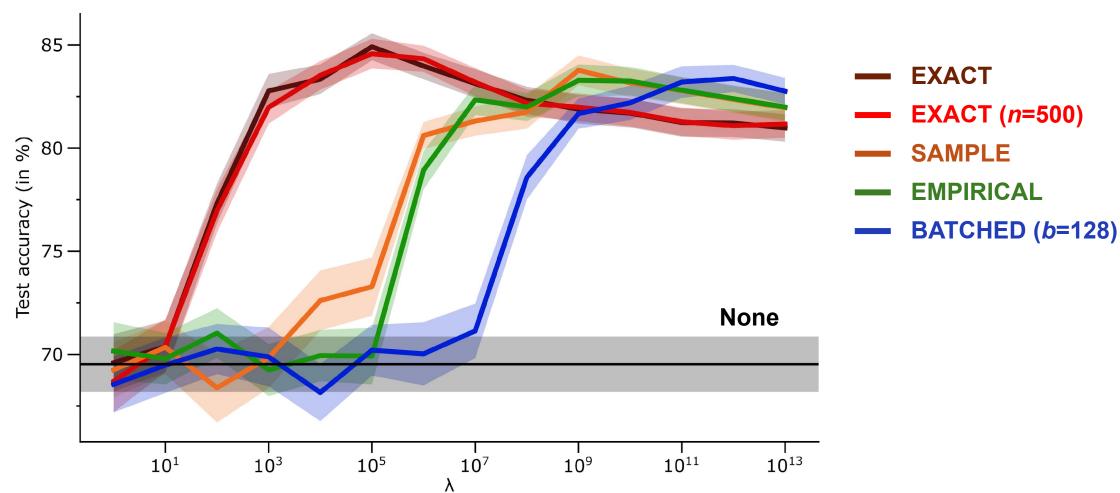
I will explore this option using b=128, referring to it as **BATCHED** (b=128)



Empirical Comparisons – Split MNIST



Empirical Comparisons - Split CIFAR-10



Conclusion

 The way in which the Fisher Information is computed can have substantial impact on the performance of EWC

Recommendations

- (1) When using EWC, give details of how the Fisher is computed
- (2) Do not simply "use the best performing hyperparameters from another paper", if you cannot guarantee that the Fisher is computed in the same way
- (3) It might be better to estimate the Fisher with fewer training samples, than to cut corners in some other way