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Three types of incremental learning:
a framework for continual learning



What is continual learning?

• In classical machine learning, an algorithm has access to all training 
data at the same time

• With continual learning, two key differences are:
- the training data arrives incrementally
- the distribution from which the training data is sampled changes over time



Continual learning in relation to other fields

Source: De Lange et al. (2021, TPAMI) 
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https://ieeexplore.ieee.org/abstract/document/9349197?ref=https:%2F%2Fgithubhelp.com&casa_token=_nbUrsz4reIAAAAA:yeygoQ8Ylz6Rab8_zrMMc8D2VMLZvds9J4u6VuO2bGt2dVA2PTcF4GKGwb3irnT9PdjMRUwNJ9Y


The canonical continual learning example: Split MNIST

• MNIST dataset is split in multiple parts/episodes/tasks that must be learned sequentially
• After all tasks have been learned, the model should be good at all tasks
• Typically, no or only a small amount of data from past tasks can be stored

Important problem: catastrophic forgetting
Ø When learning a new task, deep neural networks tend to rapidly forget past tasks

Time
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Three continual learning scenarios

Sources: van de Ven & Tolias (2018, NeurIPS workshop), van de Ven et al. (2022, Nature Machine Intelligence)

https://arxiv.org/abs/1904.07734
https://www.nature.com/articles/s42256-022-00568-3


Three continual learning scenarios: intuitively

• Task-incremental learning  (Task-IL)
• Incrementally learn a set of clearly distinguishable tasks

• Domain-incremental learning  (Domain-IL)
• Learn the same type of problem in different contexts

• Class-incremental learning  (Class-IL)
• Incrementally learn a growing number of classes

Important challenge:  achieve positive transfer between tasks

Important challenge:  alleviate catastrophic forgetting

Important challenge:  learn to discriminate between objects not observed together
Images designed by Freepik

Sources: van de Ven & Tolias (2018, NeurIPS workshop), van de Ven et al. (2022, Nature Machine Intelligence)

https://arxiv.org/abs/1904.07734
https://www.nature.com/articles/s42256-022-00568-3


Categorizations of continual learning strategies

Parameter regularization Functional regularization

Template-based classification

Replay

Context-specific components

Source: van de Ven et al. (2022, Nature Machine Intelligence) 

https://www.nature.com/articles/s42256-022-00568-3


Baselines: finetuning (lower target) & joint training (upper target)

None: Network sequentially trained 
on each task in the
standard way (lower target)

Joint: Network trained on all tasks 
at the same time (upper target)

Domain-incrementalTask-incremental Class-incremental

Empirical comparison on Split MNIST according to each scenario

Code for these experiments: https://github.com/GMvandeVen/continual-learning

https://github.com/GMvandeVen/continual-learning


Regularization

• In continual learning, regularization typically means adding a penalty 
term to the loss function to encourage the model to stay close to a 
previous version of itself.

• Often, the version relative to which changes are penalized is a copy of 
the model stored after finishing training on the last task

• Two forms of regularization:
Parameter regularization Functional regularization



Parameter regularization

ℒ!"!#$ = ℒ + 𝜃 − 𝜃∗ &

𝜃∗:  parameters relative to which changes are penalized
Σ :  estimate of how important parameters are

. " :  weighted norm

• Parameters important for past tasks are encouraged not 
to change too much when learning a new task

• Can often be interpreted as sequential approximate 
Bayesian inference on the network’s parameters

• Representative methods:
- Elastic Weight Consolidation [EWC] (Kirkpatrick et al., 2017 PNAS)
- Synaptic Intelligence [SI] (Zenke et al., 2017 ICML)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learning

https://doi.org/10.1073/pnas.1611835114
https://proceedings.mlr.press/v70/zenke17a
https://github.com/GMvandeVen/continual-learning


Functional regularization

ℒ!"!#$ = ℒ + 𝑓' , 𝑓'∗ 𝒜

𝑓#∗ :  function relative to which changes are penalized
𝒜:  set of ‘anchor points’ at which the divergence

between 𝑓# and 𝑓#∗ is measured

• The input-output mapping learned previously is 
encouraged not to change too much at a particular set 
of inputs (the ‘anchor points’)

• Also referred to as knowledge distillation

• Representative methods:
- Learning without Forgetting [LwF] (Li & Hoiem, 2017 TPAMI)
- Functional Regularization Of Memorable Past [FROMP]

(Pan et al., 2020 NeurIPS)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learningMemory buffer size (FROMP): 100 examples per class

https://ieeexplore.ieee.org/abstract/document/8107520?casa_token=GdcoVXBBCVIAAAAA:iMmvmbsyYzo3N8GYKe5qzKSA7O1THV6O2C6s2c4uKPF44PrQgCTlsm24pxJ-5WDHyF6tIFeWmS0
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://github.com/GMvandeVen/continual-learning


Replay

• Current training data is complemented with data 
representative of past observations

• The replayed data can be sampled from a memory 
buffer or a generative model

• Representative methods:
- Experience Replay [ER] (Chaudhry et al., 2019 arXiv)
- Deep Generative Replay [DGR] (Shin et al., 2017 NeurIPS)

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learningMemory buffer size (FROMP): 100 examples per classMemory buffer size (FROMP, ER): 100 examples per class

https://arxiv.org/abs/1902.10486
https://proceedings.neurips.cc/paper/2017/hash/0efbe98067c6c73dba1250d2beaa81f9-Abstract.html
https://github.com/GMvandeVen/continual-learning


Context-specific components

• Parts of the network are only used for specific tasks
• Commonly used example: multi-headed output layer

• Requires knowledge of task identity at test time
• Representative methods:

- Context-dependent Gating [XdG] (Masse et al., 2018 PNAS)
- Separate Networks [SepN]

Domain-incrementalTask-incremental Class-incremental

Code for these experiments: https://github.com/GMvandeVen/continual-learningMemory buffer size (FROMP, ER): 100 examples per class

Context-specific components can only be used 
with domain- or class-incremental learning when 
combined with a module for context identification

https://doi.org/10.1073/pnas.1803839115
https://github.com/GMvandeVen/continual-learning


Domain-incrementalTask-incremental Class-incremental

Template-based classification

• A ‘template’ is learned for each class, and classification is performed 
based on which template is most suitable for sample to be classified

• Examples of templates are prototypes or generative models
• Allows comparing classes ‘at test time’, rather than during training

• Representative methods:
- Incremental Classifier and Representation Learning [iCaRL] (Rebuffi et al., 2017 CVPR)
- Generative Classifier [GenC] (van de Ven et al., 2021 CVPR-W)

Code for these experiments: https://github.com/GMvandeVen/continual-learningMemory buffer size (FROMP, ER): 100 examples per classMemory buffer size (FROMP, ER, iCaRL): 100 examples per class

Template-based classification methods could, in 
theory, be used for all three scenarios, but its specific 
benefit is only relevant for class-incremental learning

https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content/CVPR2021W/CLVision/html/van_de_Ven_Class-Incremental_Learning_With_Generative_Classifiers_CVPRW_2021_paper.html
https://github.com/GMvandeVen/continual-learning


Overview: Split CIFAR-100

Shown is final test accuracy (as %, averaged over all tasks) on Split CIFAR-100. ‘Budget’ indicates number of samples per class stored in memory, ‘GM’ indicates generative 
model was learned using extra parameters. Experiments were run 10 times, reported is the mean (± SEM). Source: van de Ven et al. (2022, Nature Machine Intelligence) 

https://www.nature.com/articles/s42256-022-00568-3


Summary

• Continual learning is not a unitary problem: there are three scenarios 
that differ substantially in terms of difficulty and in terms of the 
effectiveness of different computational strategies

• Regularization-based methods often have relatively low memory and 
computational costs, but they struggle in certain settings

• Replay can work well in all three scenarios, but has relatively high 
memory and computational costs

• Class-incremental learning seems to require either replay (to allow 
comparing classes during training) or template-based classification (to 
allow comparing classes during inference)

• More details: van de Ven et al. (2022, Nature Machine Intelligence)

https://www.nature.com/articles/s42256-022-00568-3
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