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Memory consolidation in the brain:
cell assembly / reactivation hypothesis
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ldentification of memory-representing “cell assemblies”
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ldentification of memory-representing “cell assemblies”
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ldentification of memory-representing “cell assemblies”
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Assembly pattern expression strength

ldentification of memory-representing “cell assemblies”
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An assembly pattern’s reactivation
predicts it subsequent reinstatement

Reinstatement strength
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An assembly pattern’s reactivation
predicts it subsequent reinstatement

Reinstatement strength
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Selective disruption of reactivation?
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Selective disruption of reactivation: optogenetic SWR silencing
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SWR-silencing impairs assembly
pattern reinstatement
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Summary Part |

* In the brain, reactivation stabilizes recently-formed, memory-representing
cell assembly patterns

But ...

* How does reactivation stabilize these patterns?

 Why do memory-representations need to be gradually stabilized?
Why are they not just stored “in one go”?

Approach

e Artificial neural networks as “model organism”
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Catastrophic Forgetting in Artificial Neural Networks
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Catastrophic Forgetting in Artificial Neural Networks
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Generative Replay

Classifier Generator (e.g., GAN or VAE)
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Generative Replay can prevent Catastrophic
Forgetting
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Test accuracy
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s Generative Replay scalable to more complicated inputs?
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Brain-inspired modifications to Generative Replay:

Classifier Generator (e.g., GAN or VAE)
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Brain-inspired modifications to Generative Replay:

“Visual Cortex”
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Brain-inspired modifications to Generative Replay:
- through feedback connections
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Brain-inspired modifications to Generative Replay:
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Brain-inspired modifications to Generative Replay:

- through feedback connections
- replay hidden representations
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Brain-inspired modifications help Generative Replay scale
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Summary Part I

* Generative Replay can successfully reduce Catastrophic Forgetting in
artificial neural networks

 Modelling it after the brain helps to make this strategy scalable
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