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spike trains

Identification of memory-representing “cell assemblies”

Hippocampus



assembly patterns

Assembly-detection method 
based on PCA and ICA

Identification of memory-representing “cell assemblies”



assembly pattern expression-strengthtracked over time

Identification of memory-representing “cell assemblies”



assembly maps

Identification of memory-representing “cell assemblies”



An assembly pattern’s reactivation
predicts it subsequent reinstatement

(based on 43 recording-blocks from 8 mice)

n = 138
assembly
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Selective disruption of reactivation?

(based on 43 recording-blocks from 8 mice)

Novel: n = 139 assembly-patterns
Familiar: n = 108 assembly-patterns



OFF: n = 1,988 neurons (from 43 sessions)
ON:  n = 1,527 neurons (from 37 sessions)

Selective disruption of reactivation: optogenetic SWR silencing



SWR-silencing impairs assembly
pattern reinstatement

(based on 50 recording-blocks from 8 mice)

n = 136
assembly
patterns

n = 139



SWR-silencing impairs assembly
pattern reinstatement

(based on 80 recording-blocks from 8 mice)

n = 136
assembly
patterns

n = 139n = 78n = 108

interaction SWR-silencing x enclosure type:
F(1,318) = 5.05, P < 0.05



Summary Part I

• How does reactivation stabilize these patterns?
• Why do memory-representations need to be gradually stabilized?

Why are they not just stored “in one go”?

But …

Approach
• Artificial neural networks as “model organism”

• In the brain, reactivation stabilizes recently-formed, memory-representing 
cell assembly patterns

Further details:  van de Ven et al. (2016) Neuron [+ video abstract], or ask me for more slides!
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Catastrophic Forgetting in Artificial Neural Networks

Could reactivation prevent 
Catastrophic Forgetting?



Classifier Generator (e.g., GAN or VAE)

…

Shin et al. (2017) NIPS

Generative Replay



Generative Replay can prevent Catastrophic 
Forgetting



Is Generative Replay scalable to more complicated inputs?
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Brain-inspired modifications to Generative Replay:
- through feedback connections
- replay hidden representations
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Brain-inspired modifications to Generative Replay:
- through feedback connections
- replay hidden representations



Brain-inspired modifications help Generative Replay scale
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Summary Part II

Contributors & Funding

• Generative Replay can successfully reduce Catastrophic Forgetting in 
artificial neural networks
• Modelling it after the brain helps to make this strategy scalable

Further details:  see poster B1 tomorrow!


