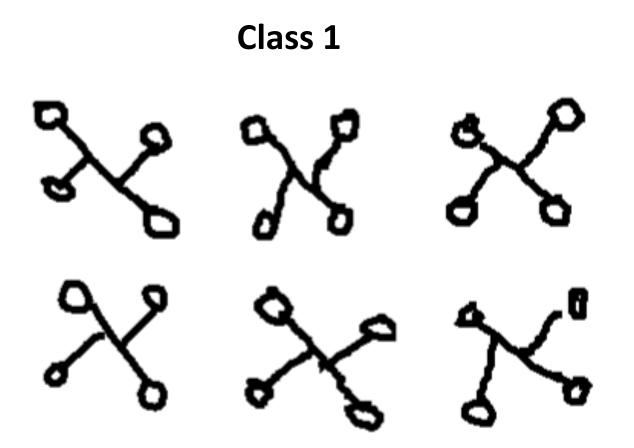


Continual Learning with deep neural networks (and links to the brain)

Gido van de Ven

Guest lecture, UMass

7 March 2023



– Break –

Class 2 7

– Break –

To which class does this example belong?

 \rightarrow Class 1!

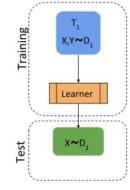
Overview of this lecture

- Introduction to continual learning
- Let's be clear about the problem: three continual learning scenarios
- Strategy 1: Generative replay
- Strategy 2: Generative classifiers
- Which strategy do *we* use?

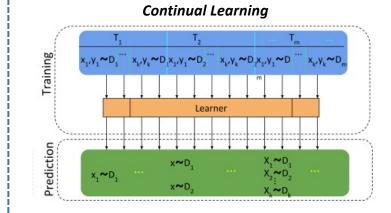
What is continual learning?

- In *classical machine learning*, an algorithm has access to all training data at the same time
- With *continual learning*, two key differences are:
 - the training data arrives incrementally
 - the distribution from which the training data is sampled changes over time

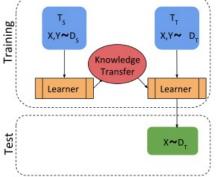
Continual learning in relation to other fields



- One task
- Data available at same time



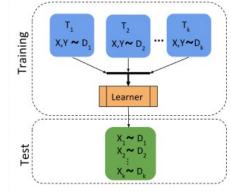
- Multiple tasks
- Data arrive incrementally incrementally
- Goal: all tasks



- Multiple tasks
- Data arrive incrementally
- Goal: last task

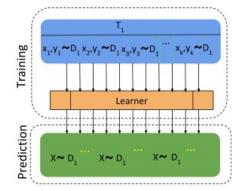
_

Multitask Learning



- Multiple tasks
- Data available at same time
- Goal: all tasks

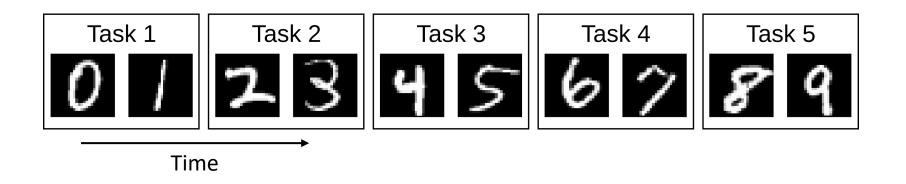
Online Learning



- One task
 - Data arrive incrementally

The canonical continual learning example: Split MNIST

- MNIST dataset is split in multiple parts/episodes/tasks that must be learned sequentially
- After all tasks have been learned, the model should be good at all tasks
- Typically, no or only a small amount of data from past tasks can be stored

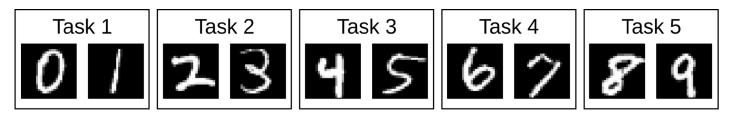


Important problem: catastrophic forgetting

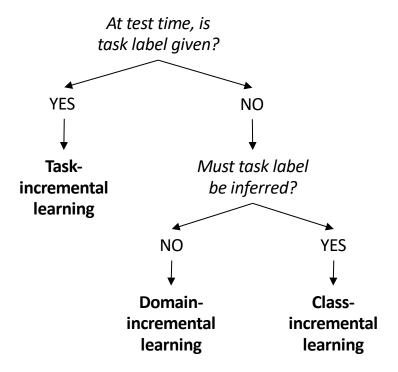
> When learning a new task, deep neural networks tend to rapidly forget past tasks

Let's be clear about the continual learning problem ...

Split MNIST:



	Type of choice
Task-incremental	Choice between the two digits of the task
Domain-incremental	Is the digit odd or even?
Class-incremental	Choice between all ten digits



Van de Ven & Tolias (2018) NeurIPS Workshop; van de Ven et al (2022) Nature Machine Intelligence

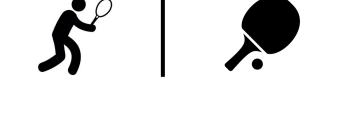
Three continual learning scenarios

- Task-incremental learning (Task-IL)
 - Incrementally learn a set of clearly distinguishable tasks

Important challenge: achieve positive transfer between tasks

- Domain-incremental learning (Domain-IL)
 - Learn the same type of problem in different contexts

Important challenge: alleviate catastrophic forgetting



Class-incremental learning (Class-IL)

• Incrementally learn a growing number of classes

Important challenge: learn to discriminate between objects not observed together

Images designed by Freepik

Strategy 1: Generative replay

Deep Learning:

 Interleaved learning prevents catastrophic forgetting

[McCloskey & Cohen, 1989 *Psych Learn Motiv*; Ratcliff, 1990 *Psych Rev*] Neuroscience:

 Replay is hypothesized to have an important role in memory consolidation

[Wilson & McNaughton, 1994 *Science;* O'Neill et al., 2010 *TINS*; van de Ven et al., 2016 *Neuron*]

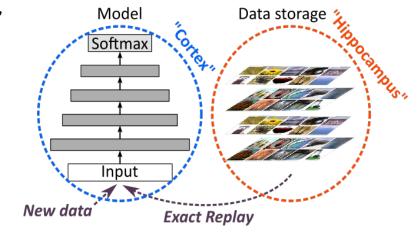
Motivation:

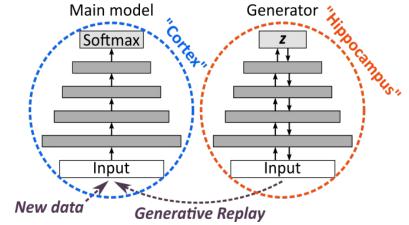
- > Use replay to enable deep neural networks to do 'continual learning'
- > Use artificial neural networks as a computational model for replay in the brain

How to add replay to artificial neural networks?

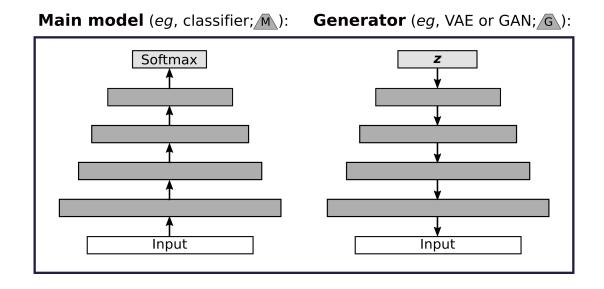
- Store data and interleave "exact" or "experience replay"
 - Initial argument for role of replay in memory consolidation in the brain [McClelland et al., 1995 Psych Rev]
 - Unclear how the brain could do directly store data
 - Not always possible (e.g., privacy concerns, limited storage)
 - Problematic when scaling up to true lifelong learning

- Use a generative model *"generative replay"*
 - More realistic from neuroscience point of view
 - Views hippocampus as a generative neural network and replay as a generative process; see also [Liu et al., 2018 Neuron; Liu et al., 2019 Cell]
 - Learning a generative model as a more scalable, privacypreserving way of remembering previous seen data

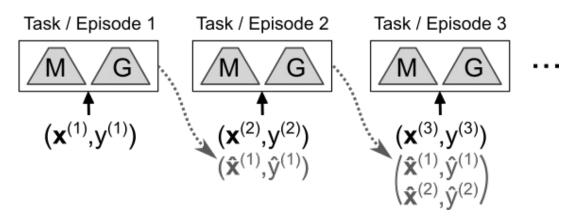




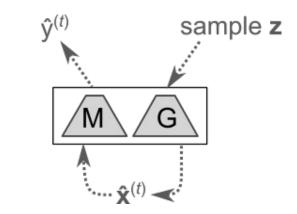
How to implement generative replay?



Incremental training protocol:

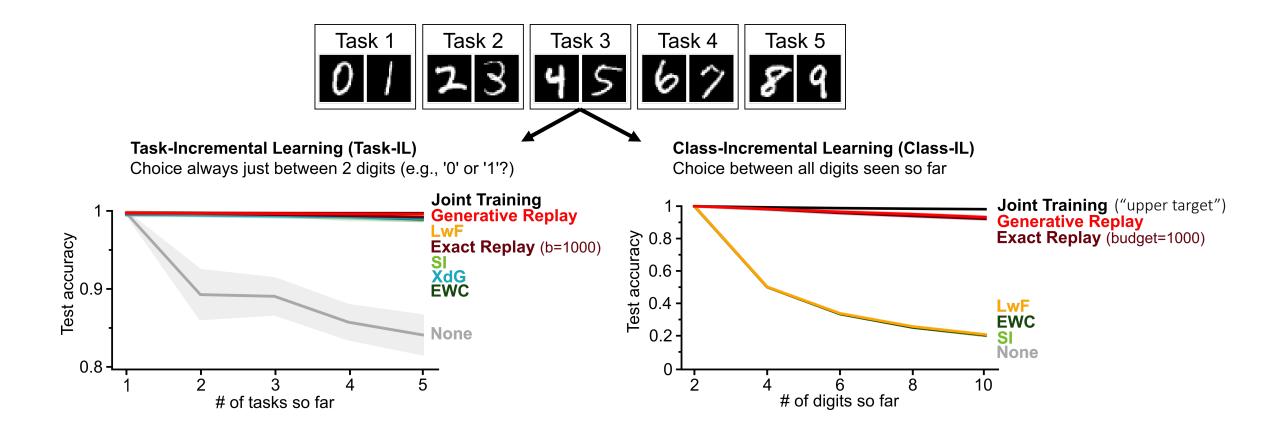


Generation of a sample to be replayed:



Shin et al. (2017) NeurIPS

Does generative replay work?

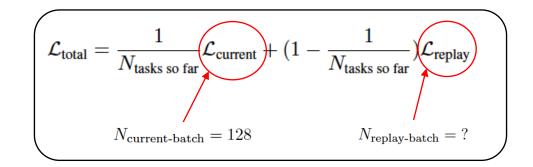


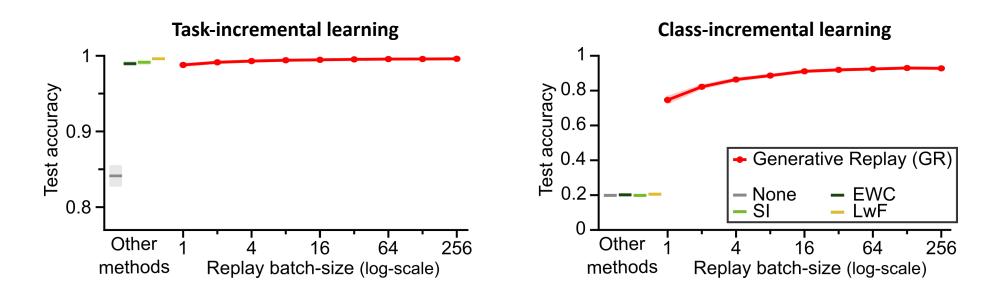
But... (1) MNIST digits are relatively easy to generate

(2) constantly retraining on all previous tasks seems very inefficient

Efficiency: How much replay is needed?

- Previous tasks' datasets do not need to be replayed "fully"
- How far could the number of replayed sampled per batch be reduced?

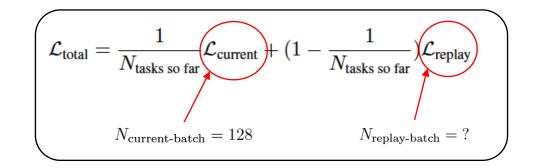


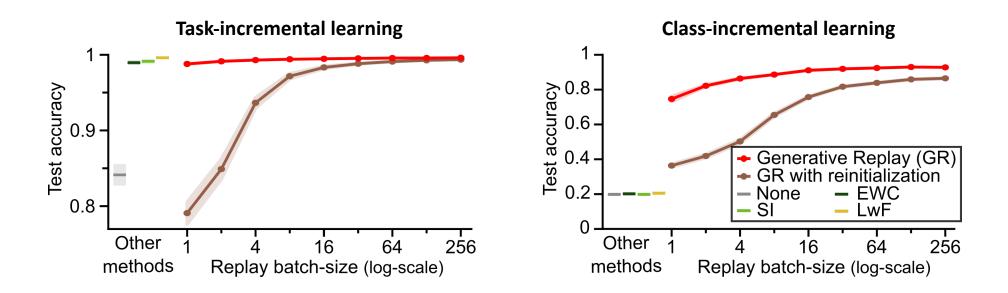


 \rightarrow Fully replaying previous tasks is not needed, replaying only a few examples could suffice

Efficiency: How much replay is needed?

- Previous tasks' datasets do not need to be replayed "fully"
- How far could the number of replayed sampled per batch be reduced?

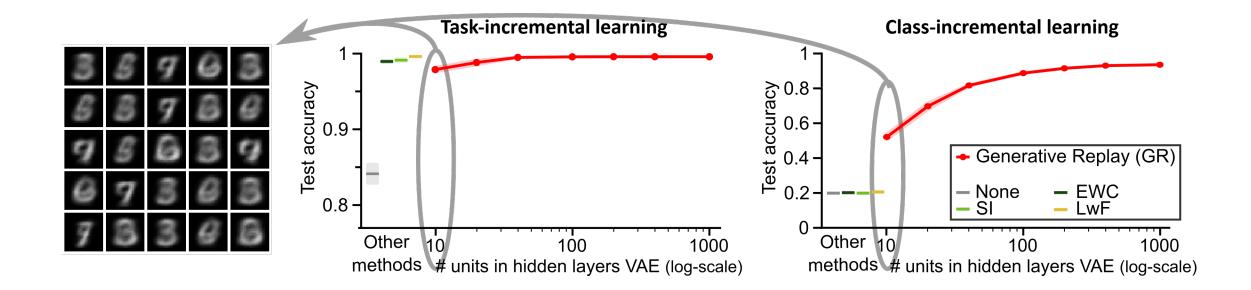




 \rightarrow Fully replaying previous tasks is not needed, replaying only a few examples could suffice

Robustness: How good does the replay need to be?

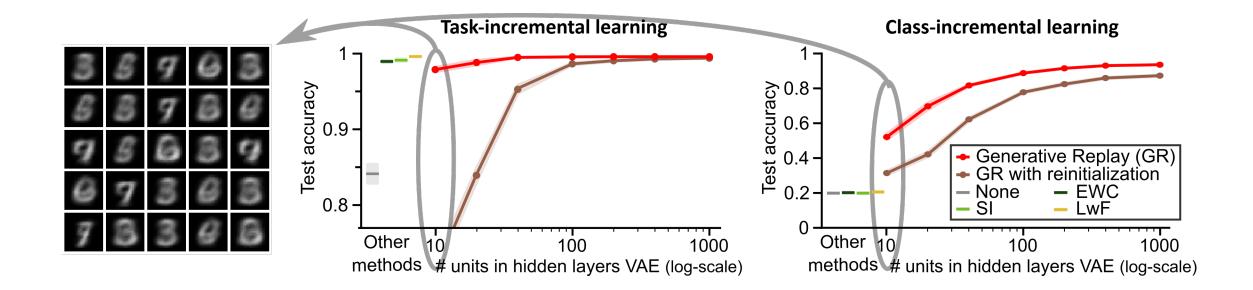
- Generating MNIST-digits is relatively easy; could this scale to more complicated inputs?
- Performance of generative replay is evaluated as function of the size of the generator



 \rightarrow A perfect memory is not needed, a low-quality generative model could suffice

Robustness: How good does the replay need to be?

- Generating MNIST-digits is relatively easy; could this scale to more complicated inputs?
- Performance of generative replay is evaluated as function of the size of the generator



 \rightarrow A perfect memory is not needed, a low-quality generative model could suffice

Robustness and efficiency of replay

INTERIM SUMMARY:

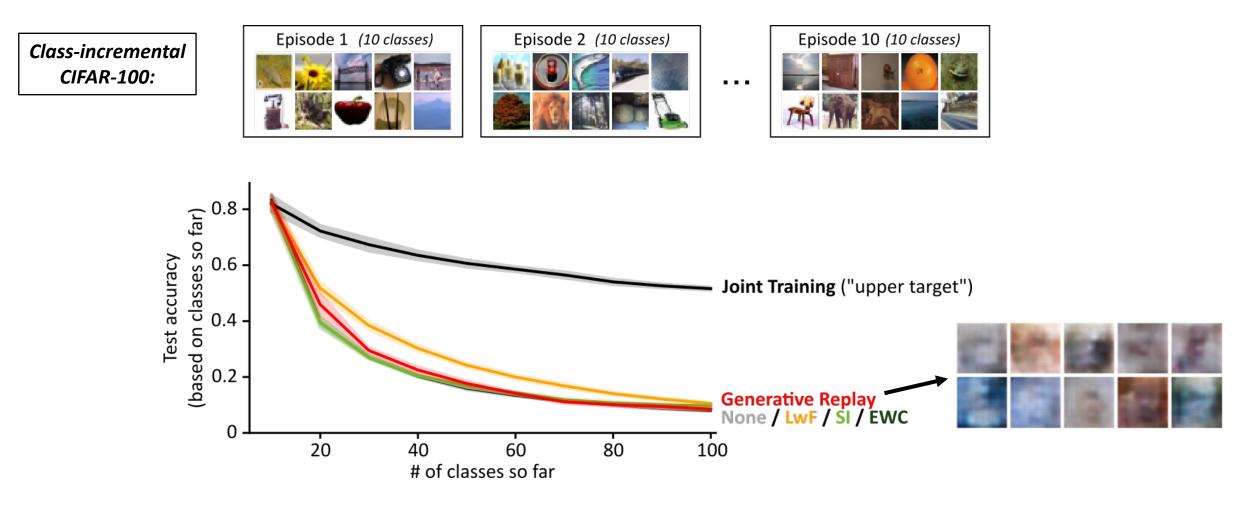
- Even replaying a few or poor-quality samples can substantially boost continual learning performance
- "Not forgetting" is easier for a network than "learning"

Further details: - van de Ven et al. (2020) Brain-inspired replay for continual learning with artificial neural networks. Nature Communications 11: 4069

Next step:

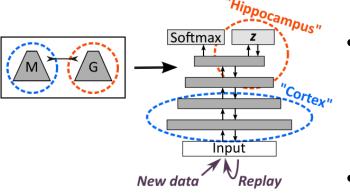
 \rightarrow Scale up generative replay to problems with more complex inputs

What about natural images?

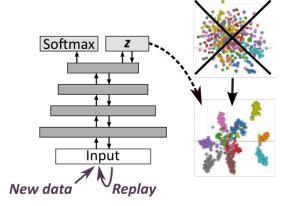


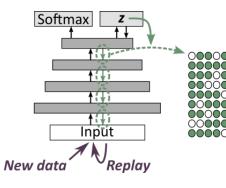
Standard versions of generative replay break down on problems with more complex inputs (e.g., natural images) [see also Lesort et al., 2019 *IJCNN*; Aljundi et al., 2019 *NeurIPS*]

Brain-inspired modifications to Generative Replay

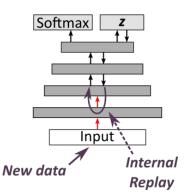


- **Replay-through-Feedback:** Merge generator into the classifier; replay is now generated by the feedback / backward connections
- **Conditional Replay:** Enable model to generate specific classes, by replacing the standard normal prior by a Gaussian mixture with a separate mode for each class



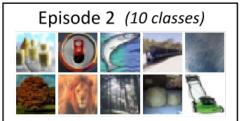


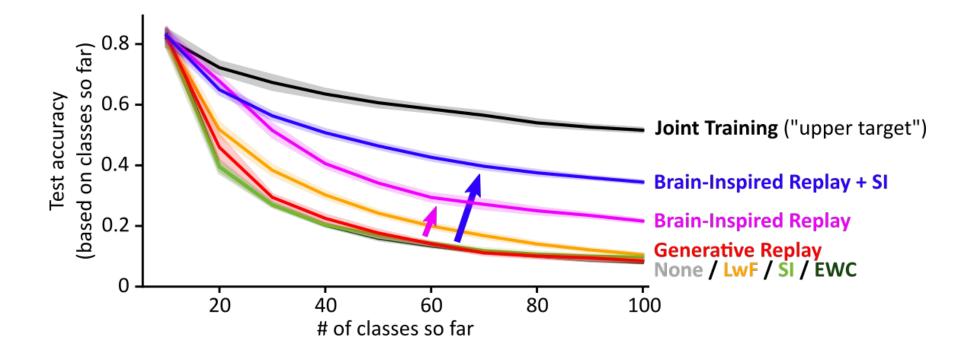
- Gating based on Internal Context: For each class, inhibit (or gate) a different subset of neurons during the generative backward pass
- Internal Replay: Replay internal or hidden representations, instead of at the input level (e.g., pixel level)



Brain-inspired replay on natural images

Class-incremental CIFAR-100:





Scaling generative replay to more complex problems

INTERIM SUMMARY:

- Scaling up generative replay to problems with more complex inputs is not straight-forward
- Brain-inspired modifications help to scale up generative replay
- In particular, replaying abstract, high-level representations increases performance while lowering computational costs (see also: Liu et al., 2020 CVPR-W; Pellegrini et al., 2020 IROS)

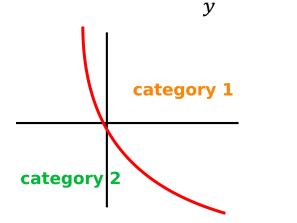
Further details: - van de Ven et al. (2020) Brain-inspired replay for continual learning with artificial neural networks. Nature Communications 11: 4069

But despite improvements, a substantial performance gap remains relative to the upper target of jointly training on all classes ...

Strategy 2: Generative Classification

Discriminative classifiers

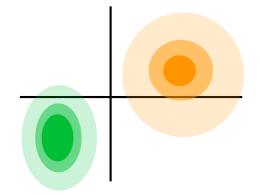
• Directly learn $p(y|\mathbf{x})$, or $\operatorname{argmax} p(y|\mathbf{x})$.



- Learn rules / shortcuts / features to distinguish between the classes to be learned
- Comparison between classes is during *training*

Generative classifiers

 Learn p(x, y), factorized as p(x|y)p(y), and classify using Bayes' rule



- Learn a model / template / representation for each class to be learned
- Comparison between classes is during *inference*

Generative classification *rephrases a class-incremental problem as a task-incremental problem*, whereby each 'task' is to learn a class-conditional generative model.

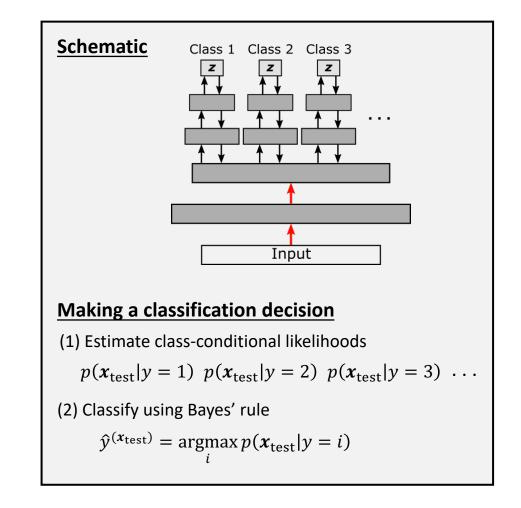
van de Ven et al (2021) CVPR-W proceedings

Naïve implementation for proof-of-principle

- Separate VAE model for each class

(this is the naïve solution for a task-incremental learning problem, upon which successful task-incremental learning methods should be able to improve)

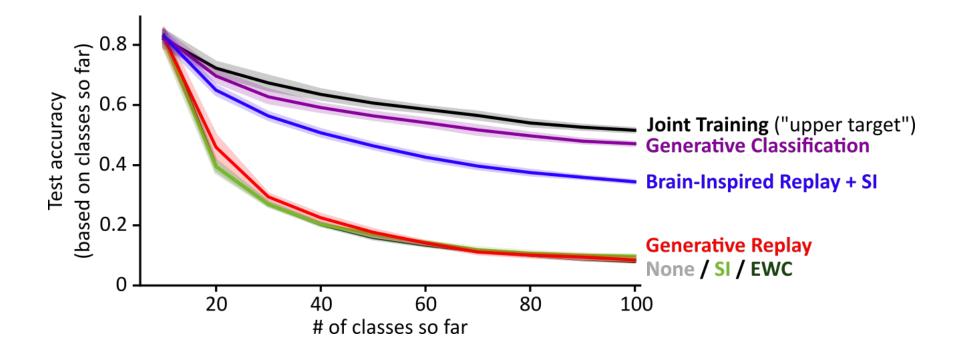
- If a pretrained network is available, the VAE models are trained on the latent features
- Class-conditional likelihoods are estimated using importance sampling
- The *total* number of parameters is similar to that of brain-inspired replay



Naïve implementation for proof-of-principle

Class-incremental CIFAR-100:

. . .



Generative classification

INTERIM SUMMARY:

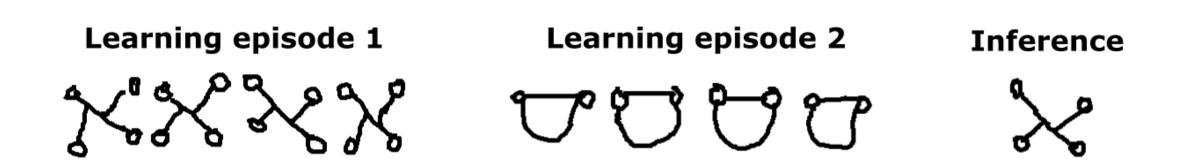
- Generative classification is a promising, "rehearsal-free" strategy for classincremental learning
- Generative classification rephrases a class-incremental learning problem as a task-incremental learning problem
- How to use a generative model? At least in some settings, using it directly for generative classification outperforms using it indirectly for generative replay

Further details: - van de Ven et al. (2021) Class-incremental learning with generative classifiers. CVPR-W proceedings: 3611-3620

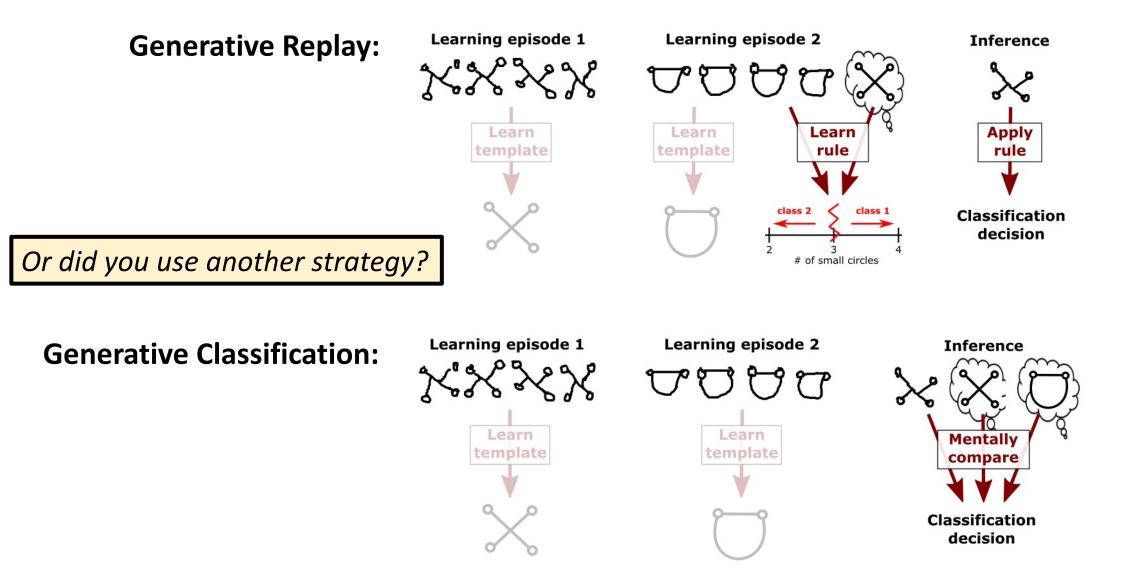
Limitations / future work:

- How to share parts of the different generative models remains an open question
- Inference is slow, as likelihood must be computed/estimated for each possible class

Which strategy do *we* use?

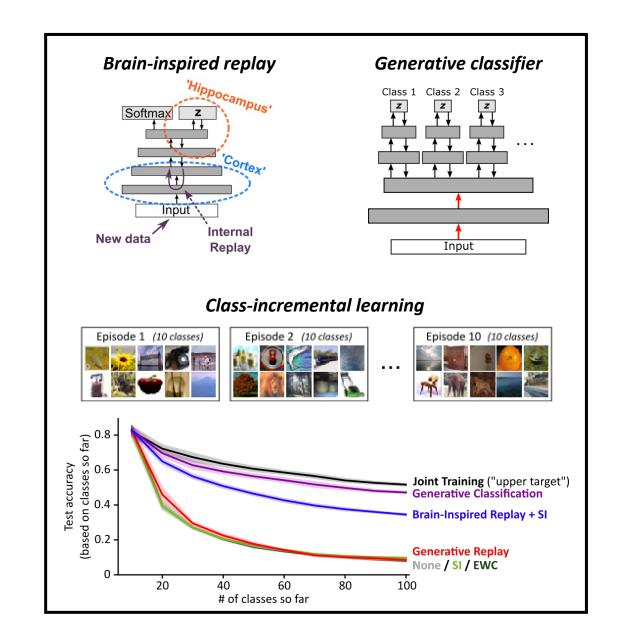


Which strategy do we use?



Overall summary

- Continual learning is not a unitary problem: there are three different scenarios, each with their own challenges
- Class-incremental learning requires learning to distinguish classes that are not observed together van de Ven et al (2022) Nature Machine Intelligence
- Even replaying a few or poor-quality samples can substantially boost continual learning performance
- Scaling generative replay up to problems with more complex inputs is nevertheless not straight-forward
- Replaying abstract, high-level representations increases performance while lowering computational costs van de Ven et al (2020) Nature Communications
- How to use a generative model? Directly (for generative classification) or indirectly (for generative replay)?
- Generative classification is a promising, "rehearsal-free" strategy for class-incremental learning
 van de Ven et al (2021) CVPR-W proceedings



Acknowledgements

Mentors:

- Andreas Tolias (Baylor)
- Tinne Tuytelaars (KU Leuven)

Collaborators:

- Stefano Fusi (Columbia)
- Máté Lengyel (Cambridge)
- Hava Siegelmann (UMass)
- Matthias De Lange (KU Leuven)

- Kimberly Tolias (Baylor)
- Alexander Reyes (NYU)
- Zhe Li (Baylor)

References

- Aljundi R, Lin M, Goujaud B, Bengio Y (2019) Gradient based sample selection for online continual learning. *NeurIPS:* 11816-11825.
- De Lange M, Aljundi R, Masana M, Parisot S, Jia X, Leonardis A, Slabaugh G, Tuytelaars T (2022) A Continual Learning Survey: Defying Forgetting in Classification Tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44: 3366-3385.
- Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, ..., Hadsell R (2017) Overcoming catastrophic forgetting in neural networks. PNAS **114**: 3521-3526.
- Lesort T, Caselles-Dupré H, Garcia-Ortiz M, Stoian A, Filliat D (2019). Generative models from the perspective of continual learning. *IJCNN:* 1-8.
- Li Z, Hoiem D (2017) Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **40**: 2935-2947.
- Liu K, Sibille J, Dragoi G (2018) Generative predictive codes by multiplexed hippocampal neuronal tuplets. *Neuron* **99**: 1329-1341.
- Liu Y, Dolan RJ, Kurth-Nelson Z, Behrens TE (2019). Human replay spontaneously reorganizes experience. *Cell* **178**: 640-652.
- Liu X, Wu C, Menta M, Herranz L, Raducanu B, Bagdanov AD, ..., van de Weijer J (2020). Generative feature replay for class-incremental learning. *CVPR-W proceedings*: 226-227.
- Masse NY, Grant GD, Freedman DJ (2018) Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. *PNAS* **115**: E10467-E10475.
- McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. *Psychological Review* **102**: 419-457.
- McCloskey M, Cohen NJ (1989) Catastrophic interference in connectionist networks: The sequential learning problem. *Psychology of Learning and Motivation* **24**: 109-165.
- O'Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. *Trends in Neurosciences* **33**: 220-229.
- Pellegrini L, Graffieti G, Lomonaco V, Maltoni D (2020) Latent replay for real-time continual learning. *IROS*: 10203-10209.
- Ratcliff R (1990) Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. *Psychological Review* 97: 285-308.
- Shin H, Lee JK, Kim J, Kim J (2017) Continual learning with deep generative replay. *NeurIPS*: 2994-3003.
- van de Ven GM, Siegelmann HT, Tolias AS (2020) Brain-inspired replay for continual learning with artificial neural networks. *Nature Communications* **11**: 4069.
- van de Ven GM, Trouche S, McNamara CG, Allen K, Dupret D (2016) Hippocampal offline reactivation consolidates recently formed cell assembly patterns during sharp wave-ripples. *Neuron* **92**: 968-974.
- van de Ven GM, Tuytelaars T, Tolias AS (2022) Three types of incremental learning. *Nature Machine Intelligence* **4**: 1185-1197.
- van de Ven GM, Li Z, Tolias AS (2021) Class-incremental learning with generative classifiers. CVPR-W proceedings: 3611-3620.
- Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265: 676-679.
- Zenke F, Poole B, Ganguli S (2017) Continual learning through synaptic intelligence. *ICML*: 3987-3995.